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Introduction

Introduction

The concept of idempotent completeness and idempotent completion has existed
in some form or another at least since the early 1970s. Idempotents themselves
have been studied for far longer than that of course, for example in the form of
projections in linear algebra or idempotent elements in ring theory. One reason
for the interest in idempotents is that they often appear in many of the most
fundamental constructions, one example being direct sums.

A lot of the time, we are interested in whether a given idempotent is split, ap-
proximately meaning whether it can be written in terms of a subobject on which
it acts as the identity and onto which everything else gets projected, as is the case
for projections in linear algebra. A category in which every idempotent splits gets
to be called idempotent complete. In cases where a given idempotent does not
necessarily split, we are limited in the constructions we can perform. So it is of
no surprise that mathematicians have sought to find ways to alter categories by
adding objects and morphisms such that any given idempotent splits in this bigger
category, while only adding a minimal amount of new objects and morphisms. It
further is of no surprise that this construction which explicitly seeks to split idem-
potents was first described not in an abstract category theory paper but by Max
Karoubi in theorem 6.10 of his introduction to K-theory [Kar78|]. This construc-
tion, called idempotent completion, also carries the name Karoubi completion in
honour of his work.

Another development in the early 1970s was an interest in so-called absolute col-
imits, colimits which are preserved by every functor. This was done in the context
of V-enriched categories, i.e., categories where each Hom-set carries the structure
of an object in V for an appropriate category V. In the case of Ab-enriched cat-
egories, finite direct sums are preserved by every Ab-enriched functor. So once
again, these absolute colimits classify some fundamental constructions and math-
ematicians are interested in adding these colimits to a category whenever they
don’t exist automatically. One way of doing this was described by F. William
Lawvere in [Law73| in the context of V-enriched categories. He calls this construc-
tion Cauchy completion since, among many other things, it generalises the notion
of the Cauchy completion of a metric space. Furthermore, he already notes what
we will see later in this thesis, namely, that an ordinary Set-enriched category is
Cauchy complete if and only if every idempotent in it splits. This relationship
between idempotents and absolute colimits has been studied further in the 1970s
and 1980s as described in the survey article [BD8&6].

Although the notion of higher categories in the form of bicategories has existed
since the 1960s, there seemingly was no interest in studying higher categorical ana-
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logues of idempotents and idempotent splittings until relatively recently, sparked
by applications. When before one was interested in constructions such as di-
rect sums in the category of k-vector spaces, mathematicians are now interested
in direct sums in higher categorical analogues of the category of vector spaces.
These types of higher categories have risen to prominence since they supply the
algebraic data needed to define extended topological quantum field theories and
similar constructions. Two papers which, motivated by these applications, have
begun to sketch definitions of higher idempotents and higher idempotent comple-
tions are [DR18] by Christopher J. Douglas and David J. Reutter and |[GJF19]
by Davide Gaiotto and Theo Johnson-Freyd. The latter tackles the problem in a
more general setting.

In the first section of this thesis, we will revisit 1-categorical Karoubi and Cauchy
completion in such a way that it makes the higher categorical generalisation seem
most apparent. The following four theorems are the main results of this section
and can be readily found in the literature.

Theorem 1 (see propositions and corollary [1.13). The Karoubt com-
pletion of a category s its idempotent completion.

By this, we mean that it is a completion under splitting idempotents and it is
in some sense minimal among all such possible completions. We also prove the
following statement about Karoubi completion, which is also well known but less
documented.

Theorem 2 (see theorem [1.12)). Karoubi completion defines a left adjoint 2-
functor (—):Cat — Cat;. from the 2-category of categories into the 2-category
of idempotent complete categories.

This will be of much use later in the thesis. For the Cauchy completion of a
category, we get the following analogous statement.

Theorem 3 (see propositions [1.23] and corollary [1.29). The Cauchy com-
pletion of a category s its completion under absolute colimaits.

This leads us to the following statement about idempotent completeness and com-
pleteness under absolute colimits.

Theorem 4 (see corollary (1.28)). A category is idempotent complete if and only
if 1t 1s complete under absolute colimats.

This is a consequence of theorem [1.27] which tells us that the Karoubi completion
and the Cauchy completion of a given category are equivalent.

In the second section of this thesis, we will lay down the necessary bicategorical

prerequisites for this thesis and prove the following statement along the way.
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Construction 5 (see construction and theorem [2.45). One can explicitly
construct weighted colimits in the 2-category Cat.

A weighted colimit is a bicategorical version of a colimit in an ordinary category.
This construction is analogous to that of colimits in the category Set, but has not
been done anywhere this explicitly.

In the third section, we will introduce the definitions of 2-idempotents and their
splittings and of the Karoubi completion of a locally idempotent complete bicat-
egory following [GJF19], locally idempotent complete meaning that every Hom-
category is idempotent complete. We will then show the following bicategorical
analogue of theorem

Theorem 6 (see propositions and theorem [3.10). The Karoubi comple-
tion of a locally idempotent bicategory is its idempotent completion.

In the last section of this thesis, we go on to define the Cauchy completion of
a bicategory analogously to its 1-categorical counterpart and get the following
statement as a bicategorical counterpart to theorem

Theorem 7 (see propositions [4.8] and corollary [4.13). The Cauchy com-
pletion of a locally idempotent bicategory is its completion under absolute

werghted colimats.

Finally, we have the following bicategorical analogue of theorem

Theorem 8 (see corollary 4.12). A locally idempotent complete bicategory is
idempotent complete if and only if it 1s complete under absolute weighted
colimats.

This is a consequence of theorem [4.11} which tells us that the Karoubi completion
and the Cauchy completion of a given locally idempotent bicategory are equivalent.
So far, the proof of this theorem has only been sketched in [GJF19].

We require the reader of this thesis to be familiar with ordinary category theory.
To avoid set-theoretic issues, we assume that all our categories and colimits are
small for an appropriate Grothendieck universe.
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1 The 1-Categorical Case

1 The 1-Categorical Case

1.1 Idempotents and their Splittings

Definition 1.1. (Idempotent) An idempotent in a category C consists of an en-
domorphism p:A — A on some object A in C with the property that p?=p.

Example 1.2. In linear algebra these morphisms are often called projections since
a linear idempotent p:V —V projects each element of V into the subspace im(p)
and acts as the identity on im(p). This can be expressed by the fact that the
corestriction p[™™:V —im(p) and the inclusion i:im(p)—V satisfy p|™=Ploi=
idim(p). They also satisfy top[=P)=p.

Definition 1.3. (Split Idempotent) In general, whenever we have an idempotent
p:A— A in a given category C for which we have a second object B and morphisms
f:A—B and g:B — A such that fog=idg and gof=p, we say that the idempotent
p splits. We say that B is a splitting of p and B is a retract of A.

Definition 1.4. (Idempotent Complete Category) When, for a given category C,
every idempotent in C splits, we call C idempotent complete.

A splitting of an idempotent can also be given by a colimit.

Proposition 1.5. Let C be a category, A an object in C, and p:A—A an
idempotent. The coequaliser of
id A
AT ZA
P
defines a splitting of p. Furthermore every splitting of p defines such a
coequaliser.

Proof. A colimit of the above diagram consists of an object B and a morphism
f:A—B such that fop=foida =f which satisfies the universal property of the
colimit. Since p:A — A also has the property that pop=poida, there exists a
morphism ¢:B— A such that gof=p. Furthermore we have fogof=fop=Ff=
idgof and since f is colimiting, fog=idg. Thus the coequaliser defines a splitting
of p.

Now let B be an object with morphism f:A— B and g:B— A such that fog=idg
and gof=p and let C be another object with a morphism h:A — C such that
hop=h. We have a morphism hog:B— C which satisfies hogof=hop=h. Now
let k:B — C be another morphism such that kof=h, we then have hog=kofog=
koidg=k. Thus f: A — B defines a coequliser of id, and p. O]

1



1 The 1-Categorical Case

Corollary 1.6. A splitting of an idempotent 1s unique up to unique isomor-
phism.

Definition 1.7. (Free Walking Idempotent) We define &; to be the category with
one object X and one non-identity morphism p:X— X which satisfies p>=p. We
call this category the free walking idempotent. It carries this name since the
data of an idempotent in a given category C is equivalent to that of a functor
F:&; —C. Furthermore the coequaliser of proposition [1.5| can then be expressed
as the colimit of the corresponding functor.

We already note here that the category &, is special. A splitting of an idempotent
is defined purely equationally. Since functors preserve equations, functors preserve
splittings, i.e., if an idempotent p:A— A splits via f:A—B and g:B—A in C
and F:C—7D is a functor, the idempotent Fp:FA — FA splits via Ff:FA—FB and
Fg:FB—FA in D. Since an idempotent splitting is defined by a colimit of a
functor out of &;, &; has the property that every colimit of a functor out of it
gets preserved by every functor with appropriate domain.

We have just now already seen that the category Vect) of k-vector spaces and
linear maps is indeed idempotent complete. But very much not all categories are.
One example is the category Rel of sets and relations. The relation {(0,0),(0,1)}
on the set {0,1} defines an idempotent and one can show that this idempotent
does not split in Rel. In the following section we will see how we can construct an
idempotent complete category from a given category. This construction will turn
out to be minimal in the sense that it does not add more than is required.

1.2 Karoubi Completion

Definition 1.8. (Karoubi completion) Let C be a category. We define the Karoub:
completion C to be the category with the following data.

e Objects in C are idempotents in C, i.e., an object in C consists of an object
A in C and a morphism p:A — A in C such that p?=p. We will denote this
object by A,.

e A l-morphism between A, and B, is given by a morphism f:A — B in C such
that fop=f and qof=f.

e Composition of morphisms in C is given by the composition in C.

e The identity morphism on A, is given by p:A, — A,,.
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The morphism in this category are also sometimes called bilodules since they are
in some sense decategorified bimodules and hence one letter away from bimodules.
The action of a ring on an abelian group is replaced by the action of an idempotent
on a morphism, this action being equality.

We first will show that C is a completion of C in the sense that C embeds into C
and is equivalent to it if C was already idempotent complete.

Proposition 1.9. For every category C, there exists a fully faithful functor
e:C—C. If C s furthermore idempotent complete, i.e., every idempotent
splits in C, this functor is an equivalence.

Proof. We define (o to map an object A in C onto the object Ajq, in C and
a morphism f:A—B onto f:Ajq, — Big,. Since any morphism f:A —B has the
property that foidy =f and idgof=f, we see that (¢ is fully faithful.

Now assume that C is idempotent complete and let A, be an object in C. We know
that the idempotent p: A — A splits in C, which means there exists an object B in
C and morphisms f:A—B and g:B— A such that gof=p and fog=idg. These
define morphisms f:A, — Bijgq, and g:Bjq, — A, since fop=fogof=idgof=f and
pog=gofog=goidg=g.

We now have gof=p=ida, and fog=ids :idBidB. Thus it follows that A, =Biq,
and ¢ is an equivalence of categories. O]

For C to be the completion of C under splitting idempotents, we want C itself to
be idempotent complete, which we will show in the following.

Proposition 1.10. For any category C, the Karoubt completion C is 1dempo-
tent complete.

Proof. Let A, be an object in C and e:A, A, be an idempotent on A,, i.e.,
eop=e, poe=e and e’=e. It therefore follows that A. is an object in C and
we have the morphisms e:A, - A, and e:A.— A,. Composing these morphisms,
we see that eoe=e:A, = A, and eoe=e=ids . :A.— A.. Thus the idempotent
e:A, — A, splits. O

Since an idempotent p:A — A in C defines an idempotent p:Aiq, = Aiq, In C , We
also get the following statement.

Remark 1.11. For an object A, in 5, A, is a splitting of the idempotent p on
Aid, -

Finally, we want to show that the Karoubi completion C is universal among all
possible idempotent completions of C, which is why we can call it the idempotent

3



1 The 1-Categorical Case

completion of C. By universal, we mean that for any functor F from C into an
arbitrary idempotent complete category D, there is a functor F :C —D such that
Fo ¥ =F.

For this we will invoke the language of 2-categories, i.e., categories where each
Hom-set carries the structure of a category such that composition of morphisms
is functorial. A 2-functor between 2-categories is then a functor together with
functors for each Hom-category. Later in this thesis, we will properly introduce 2-
categories and their weakened variants, bicategories, but for now we will continue
since the reader needs only be familiar with the 2-category Cat of categories,
functors and natural transformations.

— —

This universality will take the form of an adjunction (—)-4/ where (—):Cat—
Cat;. is Karoubi completion and U/:Cat;. — Cat is the forgetful functor which
forgets, that an idempotent complete category is idempotent complete, where we
define Cat;. to be the full subcategory of idempotent complete categories of the
2-category Cat.

—

Theorem 1.12. The Karoubi completion defines a 2-functor (—):Cat — Cat;
which 1s left adjoint to the forgetful 2-functor U:Cat;. — Cat.

Proof. The 2-functor (/—\) maps a category C to the category C. A functor F:C—
D is mapped onto the functor F:C —D which maps an idempotent A, onto the
idempotent FAf, and a morphism f:A, — B, onto the morphism Ff:FAf, — FBg,.
The functoriality of F follows directly from the functoriality of F. Lastly, a natural
transformation ¢ :F— G is mapped onto the natural transformation ¢: F— G which
has components @a,=G(p)opa=@aoF(p):FAr, = GAg,. The components are
morphisms in D since

P, oF(p)=@aoF(p)oF(p)=@acF(p?) =@aoF(p)=@a, and
G(p)o®a, =G(p)oG(p)opa=G(p?)opa=G(p)opsr=a,.

For ¢ to be natural, we need that the square

FAp, —— FBr,

FAP ng

GAgp — GBgq

commutes for all morphisms f:A, — B,. This follows since the diagram
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Ff

FA P FA —" S FB 9, FB

l@&p lm JPBYT lcps
GA —2 GA -1 GB -9 G(B)

S~

commutes. We now need to check that (/—\) is functorial both on functors and nat-
ural transformations. Let C,D,£ be categories and F;G,H:C—D, K:D— ¢ func-
tors, and ¢@:F— G, :G— H natural transformations. We have 1dc—1dA and also
KF=KF. For natural transformations we have (ld}:) A, =F(p)=idpa,, = (idp)a, and

WA, Pa, =VaG(P)G(P)@a=1AG(P)PA=1aA@AF(P) =(0@)AF(p) =@,

Thus ( ) defines a 2-functor.

To h have an adJunct1on ( JFU, we now need natural transformations n:idga; —
L{( ) and e€: ( JU —idcat,. . These will have components Ne:C—C and ep:D—D
for categories C and idempotent complete categories D.

Since we already defined functors LC:C—>@, we define n to have components (¢
and denote the natural transformation by 1. We can define € and its components
ep:D—D in the following way.

Let A, be an object in D. Since D is idempotent complete, we have a splitting
(A,B,f,g) of p, i.e., an object B in D and morphisms f:A— B and g:B — A such
that gof=p and fog=idg. To define ep, we need to choose a splitting for each
idempotent A, and we choose these such that any identity idempotent Aiq, splits
via (A,A,ida,ida). We now map the idempotent A, onto B. A morphism h
between objects A, and A, that have splittings (A,B,f,g) and (A’,B',f',g') is
mapped onto the morphism f'ohog:B—B'.

This assignment is functorial. Let A,, A}, and A}, be objects in D that have
splittings (A,B,f,g), (A’,B’ f’,g) and (A” B” f”,g”) and let h:A, A}, and h'":
AL, —Ay,. be morphisms in D. We now have
ep(ida,) =e€p(p) =fopog=fogofog=idgoidg =idg =idc,(a,) and
ep(h)oep(h)=Ff"oh'og’of'ohog=f"oh’op’ohog=f"oh’ohog=ep(h'oh).

¢ defines a natural transformation since, for any functor F:C —C’ and any object
A in C, we have

~

Fie(A)=F(Aig,) =F(A)rian) =F(A)igy 0, =L F(A).

€ is however only natural up to isomorphism since, for an object A, in D with a
splitting (A,B,f,g) and a functor F: D —7D’, the splitting we choose for FAf, does

5



1 The 1-Categorical Case

not have to agree with (FA,FB,Ff,Fg). Still, these splittings must be uniquely
isomorphic since a splitting of an idempotent is given by a colimit.

Lastly, we need to check that the two triangle identities (eo(/—\))-((/—\)ou:id(f)
and (Uoe)-(tolf)=idy, hold. By looking at their components, we see that these
identities translate to eCALCA:ida and eplp=idp, which means we just have to
check that epip=idp holds for any idempotent complete category D. Since we
defined ep by choosing that an identity idempotent splits via the identity, this

holds automatically. [

Corollary 1.13. For each category C and idempotent complete category D, we
have an equivalence of categories Cat(@,D):Cat(C,D) induced by precompos-
g with (.

Proof. The adjunction (/—\) FU induces an equivalence Catic((f,D) ~ Cat(C,U(D))
by mapping F:C —D onto U(F)i. Since U is a forgetful functor we have U (D)=
D and U(F)=F. The corollary now follows since Cat;. is a full subcategory of
Cat. ]

1.3 1-Categorical Excursion

We have already seen that a splitting of an idempotent is equivalent to the data
of a colimit which is preserved by every functor with appropriate domain. Before
we can further investigate these types of colimits, we must first reflect on what it
means for a functor to preserve a colimit.

Lemma 1.14. Let F: 7 —C and G:C—D be functors and let A":F— Acoumr be
a colimit cone for F where A_ denotes the constant functor at the specified
object. The following three notions of "G preserves colimF’ are equivalent.

(i) G maps the colimit cone A" onto a colimit cone GAT: GF — Agcolimr-

(ii) G maps the natural isomorphism given by precomposing with A
(AF)*:C(colimF,—) — Cat(7,C)(F,A_)
onto a natural isomorphism

(GA")*: D(GceolimF,—) — Cat(7,D)(GF,A_).

(iii) Let AST:GF— Acomcr be a colimit cone for GF. The canonical morphism
@ :colimGF — GeolimF, which 1s given by @oAST=GAT, is an isomorphism.
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Proof. The statements (i) and (ii) are equivalent since A:F— Ax is a colimit cone
for a given functor F: 7 —C iff A*:C(X,—) — Cat(7,C)(F,A_) is a natural isomor-
phism.

Now, assume (ii) holds. Alongside the canonical morphism ¢:colimGF— GcolimF,
we also get a canonical morphism 1: GeolimF — colimGF defined by 1o GAF =ASF,
We now have @oloGAF=GA" and Ppo@oASF=ASF. Since these morphisms must
be unique, we have @ o =idgeonmr and Yo @ =idccimgr and @ is an isomorphism.

Finally, assume (iii) holds. We have (GA")*=(@oA®F)*=(A®F)*o*. Since both
¢@*:D(GcolimF,—) — D(colimGF,—) and
(ASH)*: D(colimGF,—) — Cat(J,D)(GF,A_)

are natural isomorphisms, (GAF)* is also a natural isomorphism. H

We will come to find the third notion of preserving a colimit especially useful as
we can sometimes explicitly construct the morphism ¢, which then immediately
has to be an isomorphism.

Definition 1.15. (Absolute Colimit) Let 7, C be categories and F: 7 —C a func-
tor. A colimit of F is called an absolute colimat if for every category D and functor
G:C—D, it is preserved by G.

Example 1.16. The splitting of an idempotent defines an abolute colimit.

Definition 1.17. (Absolute Category) A category J is called an absolute category
if for every category C and functor F: 7 —C, the colimit of F is absolute if it exists.

Example 1.18. We have already seen that &; defines an absolute category since
a colimit of a functor out of &; is given by a splitting of an idempotent. Another,
yet trivial, example is the terminal category 1 with one object and no non-identity
morphisms.

Definition 1.19. (Completeness under Absolute Colimits) A category C is called
complete under absolute colimats if for every absolute category J and every
functor F: 7 —C the colimit of F exists.

This definition of completeness might exclude some absolute colimits but we will
see that even those absolute colimits that do not stem from absolute categories
can be expressed non-trivially via absolute categories.

1.4 Cauchy Completion

We will now define the Cauchy completion of a category, which is the completion
under absolute colimits. It too is universal among all categories that have this

property.
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Definition 1.20. (Cauchy completion) We call an object A in a category C tiny
if the functor C(A,—):C — Set is cocontinuous, i.e., preserves all colimits.

Let C be a category. The Cauchy completion of C is defined to be the the full
subcategory of tiny objects in the category Psh(C) of presheaves on C, i.e., an
object in this category is a functor S:C — Set°® such that Psh(C)(S,—):Psh(C)—
Set is cocontinuous. We will denote this category as Psh*(C).

We first will show that Psh™(C) is a completion of C in the sense that C embeds
into Psh™(C) and is equivalent to it if C was already complete under absolute
colimits. Before we can do this, we will show the following propositions.

Proposition 1.21. Representable presheaves are tiny.

Proof. Let A be an object in a category C, we will now show that C(—,A) is
tiny. Let F: 7 —Psh(C) be a functor with colimit colimF, i.e., we have a natural
isomorphism

A*:Psh(C)(colimF,—) — Cat(7,Psh(C))(F,A_)

given by precomposing with a colimit cone A\:F— A qimr. We will now see that
Psh(C)(C(—,A),—) preserves this colimit. Applying this functor to A yields a cone

PSh(C) (C(_vA)»}\) PSh(C) (C(_)A)»F) _)APsh(C)(C( A),colimF)

R

which is defined by component-wise postcomposition with A. We will now check
that

Psh(C)(C(—,A),A)*:Set(Psh(C)(C(—,A),colimF),—)
— Cat(7,Set)(Psh(C)(C(—,A),F),A_)

defines a natural isomorphism. We know that it is natural therefore we only have to
check that its components are isomorphisms. This translates to the statement that,
for each set X and morphism ¢:Psh(C)(C(—,A),F) — Ay, there exists a unique
morphism 1:Psh(C)(C(—,A),colimF) — X such that the diagram

Psh(C)(C(—,A),A)l v

APsh(C)(C(—,A) colimF)

commutes. Using the Yoneda lemma, we can extend this diagram to the following.
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)

Psh(C)(C(—,Am Ax
PSh(C)(C(—»A)J\)J JU\—)A 7

Apsh(c)(c(—A)colimF) —=— AcolimF(A)

Since colimits in Psh(C) are computed point-wise, (A_)a defines a colimit cone for
the functor F(—)(A):J — Set and we get a unique morphism :colimF(A)— X
such that 1|~)o(7\,) A=@o) . Now we just need to confirm that the left square
commutes. For this, we check that it commutes evaluated at an arbitrary object

jin J.

Psh(C)(C(—,A),F) —2— F(j)(A)

lU\j)* lo\j)A

Psh(C)(C(—,A),colimF) —Y— colimF(A)
Let o:C(—,A) —Fj be a natural transformation. We now have
(Vo (A))(x)=Y(Aox) =(Aoa)alida) = (Aj)alxalida)) =((Aj)a0d) ()

and therefore the square commutes. We now set wzﬁ)oy. This satisfies

YoPsh(C)(C(—,A),A) =poYoPsh(C)(C(—,A)A) =ho(A_)poY=poY oYV=¢
and is furthermore unique since J) was unique. Thus C(—,A) is tiny. 0

Proposition 1.22. EBvery tiny presheaf S on C s a retract of a representable
presheaf.

Proof. Let S be a tiny presheaf on C. The co-Yoneda Lemma, otherwise also
known as the density theorem, states that each presheaf is a colimit of representa-
bles. This means there exists a category 7, a functor F: 7 —C and a colimit cone
A Ko F—As.

Since S is tiny, applying Psh(C)(S,—) yields another colimit cone

PSh(C) (S,)\) PSh(C) (S, JZCF) — Apsh(c)(gyg) .

Since the functor Psh(C)(S, &kF):J — Set takes values in Set, we can explicitly
construct a second colimit cone. We define a relation on the set

[ [ Psh(c)(s,c(—F))

jeObJg



1 The 1-Categorical Case

in the following way. For each «:S—C(—,Fj;) and 3:S—C(—,Fj,), we set a~f3 if
there exists a morphism f:j; —j, in J such that F(f),oax=p. We now take the
equivalence relation generated by this relation and define colimPsh(C)(S, & F) to
be the set of equivalence classes under this relation. The cone

A:Psh(C)(S, & .F)— A olimPsh(C)(S, % F)

is now defined via Xj(a):[oc], i.e., for each j in J, 7\]- maps «:S—C(—,F(j)) onto
its equivalence class [x]. We now also have a unique map

@:colimPsh(C)(S, &.F) = Psh(C)(S,S)

such that @oA=Psh(C)(S,A), which is defined via ¢ ([«]) =Ajox.

We know that this map has to be an isomorphism, which implies that there exists a
jin J and an oc:S —C(—,Fj) such that Ajoa=ids. Therefore xoA; is an idempotent
on C(—,Fj), which splits via S. O

Proposition 1.23. For every category C, the Yoneda embedding X .:C —Psh(C)
takes values in Psh™(C) and thus defines a fully faithful functor X.:C—
Psh®™(C). If C is furthermore complete under absolute colimits, this functor
1S an equivalence.

Proof. Let A be an object in C. By proposition[1.21], we have that &(A)=C(—,A)
is tiny. Thus the Yoneda embedding takes values in tiny presheaves and we have
a fully faithful functor X.:C—Psh*(C).

Now assume that C is complete under absolute colimits. Let S be a tiny presheaf
on C. By proposition there is an object A in C and idempotent p:C(—,A) —
C(—,A) such that p splits via S. Since the Yoneda embedding is fully faithful,
there is a morphism p:A — A such that p.=p.

Since C is assumed to be complete under absolute colimits and a splitting of an
idempotent is a colimit of a functor out of an absolute category, there is an object B
in C such that p splits via B. But now the idempotent p.=p also splits via C(—,B)
and since colimits are unique up to isomorphism we have S=(C(—,B). Therefore
the functor J.:C—Psh*(C) is essentially surjective and thus an equivalence of
categories. O

We can now also see in what way a general absolute colimit is related to absolute
categories.

Lemma 1.24. Let J and C be categories, F: 7 —C a functor and let A\:F— Ax
define an absolute colimit for some A wn C. A 1s a retract of an object in the
image of F.

10



1 The 1-Categorical Case

Proof. If we apply the functor C(A,—):C—Set to the given colimit, we get a
colimiting cone C(A,A):C(A,F) = A¢(aa). Since C(A,F) is now a functor into Set,
we have, analogously to the proof of proposition [1.22], that A is a retract of Fj
for some j in J. This means we have a functor F':&;—C and a colimit cone
N:F—Aj. ]

We furthermore conjecture that the idempotent itself also lies in the image of F.

Next we will check that the Cauchy completion of a category is indeed complete
under absolute colimits, which we will do using the following lemma.

Lemma 1.25. A retract of a tiny object 1s tiny.

Proof. Let B be aretract of a tiny object A in a category C, i.e., we have morphisms
f:A—B and g:B — A such that fog=idg. Let F: 7 —C be a functor with colimit
cone A:F—Ac. We will need to show that C(B,A):C(B,F) = A¢s,c) also defines a
colimit cone, which is equivalent to

C(B,\)*:Set(C(B,C),—) — Cat(7,Set)(C(B,F),A_)

being a natural isomorphism. Since it is automatically natural, we will just need
to show that it is an isomorphism in every component. Let ¢:C(B,F)—Ax be a
natural transformation, we need to show that there is a unique \:C(B,C) — X such
that the diagram

C(B,F) —*— Ax

b A

Acs,c)
commutes. We can expand this diagram in the following way.

g*
—

CIAF) ¢ C(BF) — X

b A

Acac) , 9 Aco)
f*

Since A is tiny, we know that C(A,A):C(A,F) — A¢(a ) is a colimiting cone. We can
now define @ =@og* and thus have a unique 1:C(A,C)— X such that PpoA,=o.
We now set =1of* and have

o, =bof ol =hod,of =@of' = pog of =@o(fog) = o.

1V is furthermore uniquely determined, since IT) was uniquely determined. Thus
C(B,A) defines a colimit cone and B is a tiny object. H

11



1 The 1-Categorical Case

Proposition 1.26. For any category C, its Cauchy completion Psh*™(C) is
complete under absolute colimits.

Proof. Let J be an absolute category and F:7 —Psh*™(C) a functor. A priori,
the colimit of F does not need to exist in Psh*(C) but since Psh(C) is cocomplete,
it will exist in Psh(C). Let A:F— Ag be a colimit cone for some S in Psh(C). By
lemma [1.24] S is a retract of a tiny presheaf and thus, by lemma S is a tiny
presheaf, proving that Psh™(C) is complete under absolute colimits. O

We would now like to show that Cauchy completion is also universal among all
completions under absolute colimits. We will prove this by showing that the
Cauchy completion and the Karoubi completion are equivalent constructions, i.e.,
they give equivalent categories.

Theorem 1.27. Let C be a category. The functor giwen by the composition

-~

. ka -
C —&— Psh(C) —<— Psh(C)

defines an equivalence of categories Cr~ Psh™(C).

Proof. First, we want to show that the functor takes values in tiny objects, i.e., for
every object A, in C, the presheaf C( te,Ap):C— Set®® is tiny. By remark Ay
is a splitting of the idempotent p on Aiy,. By absoluteness of splittings, we have
that C( le,Ap) is a retract of C( teyAig A):é (teytcA). Since (¢ is fully faithful, we
have C(ic,tcA)=C(—,A). This means that C( lc,Ap) is a retract of a representable
presheaf and by lemma [1.25] it therefore has to be tiny.

Next, we will show that the functor is fully faithful. Since the Yoneda embedding
is fully faithful and by corollary with D=Set°?, precomposition with (¢ is
fully faithful, their composition must also be fully faithful.

Lastly, we need that the functor is essentially surjective. Let S be a tiny presheaf
on C. By proposition [1.22] there exists an object A in C and an idempotent p
on A such that S is a splitting of the idempotent p. on C(—,A). By remark [1.11]
A, is a splitting of the idempotent p on Ajq, =1cA. By absoluteness of splittings,
C( lc,A,) is a splitting of the idempotent p, on Clie,teA)=C(—,A). Since splittings
of idempotents are unique up to isomorphisms, it follows that S=C( ey Ap). H

It now follows that the notions of idempotent completeness and completeness
under absolute colimits are equivalent.

Corollary 1.28. A category s idempotent complete iff 1t 1s complete under
absolute colimits.

12



1 The 1-Categorical Case

Proof. Let C be an idempotent complete category. By proposition and the-
orem , we now have C~C~Psh**(C). Since Psh*(C) is complete under ab-
solute colimits, C also must be. The opposite direction follows analogously with
proposition [1.23] [

Finally we can show that the Cauchy completion is universal among all completions
under absolute colimits in the sense that every functor F:C — D from an arbitrary
category into a category complete under absolute colimits, i.e., an idempotent
complete category, factors through the Yoneda embedding X.:C— Psh™(C).

Corollary 1.29. For every category C and tdempotent complete category D
there 1s an equivalence

Cat(Psh*™(C),D)~Cat(C,D)
given by precomposing with X..

Proof. Corollary and theorem [1.27] give us equivalences

(RN ~ s
Cat(Psh™(C),D) —< Cat(C,D) —— Cat(C,D).

Composing them we get 15(1p &5)*=(&ste)*. For an object A in C, we get

(b JiatcA:CA(LC,LCA) =(C(—,A)= XA and therefore /(15 &5)"= X5 ]

13



2 Bicategorical Prerequisites

2 Bicategorical Prerequisites

We will now lay down the prerequisites in bicategory theory required for the rest
of this thesis and retroactively supplying the definitions needed to make theorem
rigorous. We try to stick to the terminology used in [JY21].

2.1 Bicategorical Fundamentals

This first section roughly follows chapters 2 and 4 of [JY21] which gives an exten-
sive introduction to the theory of bicategories. To begin, we will give the definition
of a bicategory.

Definition 2.1. (Bicategory) A bicategory B consists of the following data.

e A collection of objects ObB. We will often times abbreviate A €ObB as
A €B for an object A in B.

e For each pair of objects A,B€B, a category B(A,B) called a Hom-category.
Objects in B(A,B) are called 1-morphisms and morphisms between 1-mor-
phisms are called 2-morphisms. Composition of 2-morphisms is called ver-
tical composition.

e For each object A €B, a 1-morphism idx € B(A,A), called the tdentity on A.
e For each triple of objects A,B,C&B, a functor
capc:B(B,C)xB(A,B)—=B(A,C),

called the horizontal composition. For l-morphisms f,f'€B(A,B), g,g9’ €
B(B,C) and 2-morphisms «:f—f" and :g— g’ we write

cascl(g,f)=gofcB(A,C),

casc (B, &) =Boa:gof—gof.

When it is clear from context, we will sometimes notate horizontal compo-
sition by concatenation and leave out the symbol for composition.

e For each collection of objects A,B,C,D €B, a natural isomorphism
aascp :CaBD (Casc X idp(a,B)) — Cacp (1dB(c,p) X CABC),
called the associator, between functors
B(C,D)xB(B,C)xB(A,B)—=B(A,D).

14



2 Bicategorical Prerequisites

e For each pair of object A,B€B a natural isomorphism

lag:cags(ids,—) — idIB(A,B))
called the left unitor.

e For each pair of object A,B&B a natural isomorphism

TaB:Caag(—,ida) — idg(a,B),

called the right unitor.

The subscripts in ¢ will often be omitted. The subscripts in a, | and r will often
be used to denote their component morphisms. This data needs to satisfy the
two following axioms for all 1-morphisms feB(A,B), geB(B,C), he B(C,D) and
keB(D,E).

Triangle Axiom: The diagram

(goidg)of a4 go(idgof)
T‘goidf
idgols
gof

in B(A,C) commutes.

Pentagon Axiom: The diagram

(koh)o(gof)
GIV ij
((koh)og)of ko(ho(gof))
Qi h,goidy idyoan, g, ¢
l Ak, hog,f T

(ko(hog))of ko((hog)of)

in B(A,E) commutes.

This finishes the definition of a bicategory.

A special class of bicategories which are simpler to handle are the following.

Definition 2.2. (2-Category) A 2-category is a bicategory B in which the asso-
ciator and the left and right unitor are all identity natural transformations.

15
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Since 2-categories lack some of the complexity of general bicategories, they are
easier to work with and one might expect this to limit their usefulness to only
few cases. But in fact we will later see that every bicategory is equivalent to a
2-category.

Within a given bicategory the notion of two objects being isomorphic is often
times too strong. Thus we define the following.

Definition 2.3. (Equivalence) Let B be a bicategory, we call two objects A,B in
B equivalent if there exist 1-morphisms f: A — B and g:B — A such that gof=ida
and fog=idg. We will denote this as A~B and call such 1-morphisms equiva-
lences.

We often times will construct a bicategory from a given one by removing some of
its objects. This can be made rigorous by the following.

Definition 2.4. (Subbicategory) Let B and B’ be bicategories. B’ is a subbicate-
gory of B if the following statements hold.

e The collection ObB’ is contained within ObB.

e For objects A,BeB’, B'(A,B) is a subcategory of B(A,B).

e The identity on A in B’ is equal to the identity of A in B.

e For objects A,B,C in B, the horizontal composition c)p- in B’ makes the

diagram

B'(B,C) xB'(A,B) ~2E, B/(A,C)

J J

B(B,C)xB(A,B) —22<; B(A,C)

commute, where the unlabeled arrows are subcategory inclusions.

e Every component of the associator in B’ is equal to the corresponding com-
ponent of the associator in B and analogously for the left and right unitors.

Furthermore B’ is a full subbicategory of B if for objects A,B€B’, B'(A,B) equals
B(A,B).

We are now going to list some examples of bicategories and ways to construct
bicategories.

16



2 Bicategorical Prerequisites

Example 2.5. (Cat) The archetypal bicategory is the 2-category Cat of cate-
gories, functors and natural transformations.

e ObCat is given by the collection of all categories.

e For each pair of categories C,D € Cat, the collection of functors Cat(C,D)
from C into D form a category with natural transformations as morphisms.

e For each category C € Cat, there exists an identity functor id. € Cat(C,C).

e For each triple of categories C,D,€ € Cat, composition of functors forms a
functor

cepe:Cat(D,£) x Cat(C,D) — Cat(C,E).

e Since composition of functors is strictly associative and strictly unital, the
associator and the left and right unitors are given by identity natural trans-
formations. The triangle axiom and pentagon axiom therefore also immedi-
ately hold.

Remark 2.6. Equivalence in the bicategory Cat turns out to be the usual notion
of equivalence of categories.

Example 2.7. (Opposite Bicategory) Let B be a bicategory with horizontal com-
position c, associator a, and left and right unitors 1 and r. We can define the
bicategory B°P in the following way.

e B°P has the same objects as B.
e Let A,B be objects in B°®?. The hom category B°?(A,B) is given by B(B,A).
e Let A ,B,C be a triple of objects in B°?. The functor
cihc:B°P(B,C) xB°P(A,B) —B°P(A,C)
is defined by

capelg,f)=ccpalf,g)=fog,
Capc(Bra)=ccpala,B)=aoB:fog—fog
for 1-morphisms f,f’€B°?(A,B)=B(B,A), g,g'€B°?(B,C)=B(C,B) and 2-

morphisms o:f—f" and :g—¢g’. Functorality of c°? follows from that of
c.

e a°f is given by a”'!, 1°°=r and r°P=1. The triangle and pentagon axiom for
B°P immediately follow from those in B.

17
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Example 2.8. (Monoidal Categories) Let C, be a monoidal category with monoidal
product ® and monoidal unit 1. C can be thought of as a bicategory C in the
following way.

C has one object which we will call X.

The one and only Hom-category is given by C(X,X)=C.
The identity 1-morphism on X is given by 1.

Horizontal composition is given by the monoidal product

®:CxC—C.

The associator and left and right unitors are given by the associator and the
left and right unitors of the monoidal category. The triangle and pentagon
axiom for monoidal categories then immediately translate to the triangle and
pentagon axiom of bicategories.

Example 2.9. (Bimod) We can define the category Bimod in the following way.

The objects of Bimod are given by associative, unital rings.

For each pair of rings R,S € Bimod, the Hom-category Bimod(R,S) is given
by the category of (R,S)-bimodules and bimodule morphisms.

The identity 1-morphism on a ring R is given by regarding R as an (R,R)-
bimodule.

For a triple of rings R,S,T horizontal composition is given by the tensor
product of bimodules

®s:Bimod(S,T) x Bimod(R,S) — Bimod(S,T)
(N,M)— MsN.

We note that the tensor product of bimodules exists only up to unique
isomorphism but the definition of horizontal composition forces us to choose
a specific realisation of the tensor product. This definition involves a choice
for every pair of modules. Any choice we make is equivalent to any other,
yet a choice nonetheless.

For rings Q,R,S,T, a (Q,R)-bimodule L, an (R,S)-bimodule M and an (S,T)-
bimodule N the components of the associator are given by the canonical
isomorphism

aN,M,L:L@)R (M@sN) — (L@R M)@SN,

18
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the components of the left unitor by the canonical isomorphism
lM : M®5 S—-M
and the components of the right unitor by the canonical isomorphism

TMIR®RM—>M.

e Since tensor products are unique up to unique isomorphism, the triangle
axiom and the pentagon axiom have to hold, since both ways of going around
the diagrams must be the same unique isomorphism.

Lastly, similarly to how a category can have a property, a bicategory can have that
property for each of its Hom-categories.

Definition 2.10. (Local Properties) Suppose P is a property of categories. A
bicategory B is locally P if every Hom-category of B has property P. In particular,
B is

e locally discrete if each Hom-category is discrete,

e locally idempotent complete if each Hom-category is idempotent complete.

Example 2.11. (Categories) An ordinary category C gives rise to a locally discrete
bicategory and thus a 2-category by regarding every Hom-set as a discrete category.

Having defined bicategories, we are now interest to look at morphisms between
bicategories. These can take many shapes but in this thesis we are interested in
the following ones.

Definition 2.12. (Pseudofunctor) Let B be a bicategory with associator a and
left and right unitors | and r and let C be a bicategoty with associator a’ and left
and right unitors U and 7. A pseudofunctor F:B— C consists of the following
data.

e An assignment F:ObB — ObC on objects.
e For each pair of objects A,B&B, a functor
Fag:B(A,B)— C(FA,FB).
The subscripts in F on Hom-categories will often be omitted.
e For each object A €B, an isomorphism
F :idpa — Fida.
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e For each triple of objects A,B,C&B a natural isomorphism
Fagc:Ciarsrc(Fec X Fag) = Faccasc.
The subscripts in F? will be used to denote its component morphisms

Fe s:FgoFf —F(gof).

The above data is required to make the following three diagrams commute for all
1-morphisms fe B(A,B), geB(B,C) and heB(C,D).

Compatibility between associators:

(FhoFg)oFf —— Fho(FgoFf)

lFi’goide lidphoFé‘ c

F(hog)oFf FhoF(gof)

2 2
JFhog,f JFh,gof

F((hog)of) _fa F(ho(gof))

Compatibility between unitors:

idpgoFf — Y Ff Ffoidpa ——— Ff
F%oideJ TFL 1deoF9¢ TFr
Fag.r Ffia
FidgoFf —2% F(idgof) FfoFidy ——2 F(foida)

A pseudofunctor between 2-categories where F° and F? are given by identities, is
called a 2-functor.

Example 2.13. (Identity Pesudofunctor) Let B be a bicategory. The identity on
B defines a pesudofunctor idg:B— B in the following way.

e The assignment on objects assigns each object in B to itself.

e The functors on the Hom-categories are the appropriate identity functors.
e id} and id2 are given by identities.

e The compatibility diagrams commute trivially.

Example 2.14. (Constant Pseudofunctor) Let B and C be bicategories, and let X
be an object in C. The pseudofunctor Ax:B— C is defined in the following way.

e Ay assigns X to every object in B.
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e For each pair of objects A,B in B the functor Ax:B(A,B) — C(X,X) is defined
to be the constant functor at idy.

o A} is given by the identity on idx.

. Ai is given by L, =Tiq,. The fact that this equality holds follows from the
Coherence Theorem for bicategories.

e It also follows, that the compatibility diagrams commute.
We call this pseudofunctor the constant pseudofunctor at X.

Analogously to how we are interested in representable functors in ordinary cate-
gory theory, we are also interested in representable pseudofunctors for which we
first need to show the following.

Remark 2.15. Let B be a bicategory and f:A — B a 1-morphism in B and let X
be another object in B. Then precomposition with f defines a functor

*:B(B,X) = B(A,X).

A 1-morphism g:B — X gets mapped to the morphism gof:A — X and a 2-morphism
«:g— g’ gets mapped onto the 2-morphism «oid;. Functoriality follows from the
functoriality of horizontal composition in B. Analogously, postcomposition with f
defines a functor

f,:B(X,A) > B(X,B).

Example 2.16. (Representable Pseudofunctor) Let B be a bicategory and X an
object in B. The pseudofunctor B(—,X):B— Cat? is defined in the following way.

e B(—,X) assigns to an object A in B the category B(A,X).

e The functor B(—,X)ag:B(A,B)— Cat(B(B,X),B(A,X)) is defined by map-
ping a 1-morphism f:A — B to the functor f*. A two morphism o:f—f’ is
mapped onto the natural transformation B(x,X):f* — (f')* with components

B(«,X)g=idgoot:gof— gof.

the naturality of B(«,X) and functorality of B(—,X)ag both follow from the
functorality of horizontal composition in B.

e The isomorphism B(—,X)$ :idg(a x) — B(ida,X) =id} is given by .
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e The isomorphism B(—,X) ;:f*g*— (gof)* has components
(hog)of—ho(gof)
given by the associator a in B. Naturality follows from the naturality of a.

e [t follows from the pentagon and triangle axioms in B, that the compatibility
diagrams commute.

Analogously, we get a pseudofunctor B(X,—):B— Cat.

Example 2.17. (Composition of Pseudofunctors) Let B,C,D be bicategories and
let F:B—C and G:C—D be pseudofunctors. The composite GF:B— C defines a
pseudofunctor in the following way.

e GF assigns to an object A in B the object GFA=G(F(A)).

For two objects A,B in B, GFag is given by Gea rsFas:B(A,B) = ID(GFA,GFB).

For an object A in B, GFS is given by G(F} )G, :idgra — GFida.

For a triple of objects A,B,C in B, the natural isomorphism GFig has
components

G(F; )Gy r: GFgoGFf — GF(gof).

It follows that the compatibility diagrams commute.

Where in ordinary category theory we have a natural transformation between
functors, in bicategory theory we have strong transformations between pseudo-
functors. These are once again not the most general version of a bicategorical
natural transformation but they are sufficient for this thesis.

Definition 2.18. (Strong Transformation) Let F,G:B— C be pseudofunctors. A
strong transformation «:F— G consists of the following data.

e For each object A in B, a component 1-morphism o :FA — GA.
e For each pair of objects A,B in B, a natural isomorphism
oo, G— (o). F:B(A,B) > C(FA,GB)
with component 2-isomorphisms
o (Gf)ooxa — axgo(Ff).

This can be represented by the following diagram.
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FA — FB

| % [

Commutative diagrams like this one where surfaces are equipped with 2-morphisms
are explained in great detail in chapter 3 of [JY21]. This data is required to sat-
isfy the following two equalities for all objects A,B,C and 1-morphisms f:A — B,
g:B—C.

Unitality:
Fida
/\
FA FA
Ocid%‘
XA XA =
Gida
/\ 7
GA fe® GA GA GA
\/ \/f
idGA idGA
Naturality:
F(gf) F(gf)
FA FC FA e FC
XA Xc = Xa Xc
/G(—gf)\) %Cf s (xg
GA ﬂei/ GC GA /GC
G¥%GB Gg Gf\GB Gg

Example 2.19. (Identity Strong Transformation) Let F:B — C be a pseudofunctor.
We can define the identity idr on F to be the following strong transformation.

e For each object A in B, xa:FA —FA is given by idga.
e For each 1-morphism f:A — B in B, o: (Ff)idpa — idrg (Ff) is given by 1 gery.

e This satisfies the unitality and naturality conditions.
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Example 2.20. (Composition) Let «:F— G, 3:G— H be strong transformations
for pseudofunctors F,G,H:B— C. We can define the composite strong transforma-
tion Boa:F—H in the following way.

e For each object A in B, we have (Box)a=paoxa:FA—HA.

e For each morphism f:A—B, (Box)s is given by

BfOid(XA ldB

(Hf)oBaoaa —= Pro(Gfloxa AN Broogo(Ff).

e This satisfies the unitality and naturality conditions.

Unlike in ordinary category theory, in bicategory theory we further have morphism
between strong transformations, since strong transformations carry coherence data
in the form of their component 2-isomorphisms.

Definition 2.21. (Modification) Let «,3:F— G be strong transformations be-
tween pseudofunctors F,G:B—C. A modification I':x— 3 consists of component
2-morphisms Iy :oxa — Pa in C(FA,GA) for each object A in B which satisfy the
following equality

Ff Ff

FA— T g FA——H rp
XA % B rB BB — XA FA BA % BB
GA— S GB GA—Gf  .GB

for each 1-morphism f:A —B in B.

Example 2.22. (Identity Modification) Let «:F— G be a strong transformation
between pseudofunctors F,G:B— C. The identity modification id, on « has com-
ponent 2-morphisms idy, : xa — xa for each object A in B.

Example 2.23. (Composition) Let I a— 3 and A:3 —vy between strong trans-
formations «,f3,y:F— G between pseudofunctors F,G:B— C. The composite Al:
o —y has component 2-morphism (ATl')a =AaTs for each object A in B.

Akin to how functors and natural transformations assemble into a category, we
have the following.
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Remark 2.24. For two given pseudofunctors F,G:B—C, we have a category
Bicat(B,C)(F,G) which has strong transformations from F to G as objects and
modifications between them as morphisms.

Example 2.25. (Whiskering) Let ' :o«— 3 and A:y— & be modifications between
strong transformations «,3:F— G, v,0: G — H between pseudofunctors F,G,H:B—
C. We can define the modification Aol:yox— 803 with component 2-morphisms

(/\OF)A:/\AOFAIO(AO}/A% BAOSA-

Remark 2.26. Let B and C be bicategories. There exists a bicategory Bicat(B,C)
which has pseudofunctors from B to C as objects, strong transformations between
these as 1-morphisms and modifications between those as 2-morphisms. The asso-
ciator and left and right unitors are given component-wise by the associator and
left and right unitors in C.

In ordinary category theory we have the notion of an equivalence of categories. If
two categories are equivalent, we expect them to look alike under all reasonable
aspects that interest us as category theorists. For bicategories we also have a
notion of equivalence which we are now able to state.

Definition 2.27. (Equivalence of Bicategories) We call two bicategories B and C
equivalent if there exist pseudofunctors F:B— C and G:C—B such that GF~idg
in Bicat(B,B) and FG ~id¢ in Bicat(C,C). We notate this as B~C and call F and
G equivalences. Note that although it carries the same name as an equivalence in
a bicategory, this is a weaker notion since the composites need only be equivalent
to the identities, not isomorphic.

This definition, while nice to formulate, is often hard to work with. So we can
define the following.

Definition 2.28. (Essential Surjectivity) A pseudofunctors F:B— C is called es-
sentially surjective if for each object C in C there exits an object B in B such
that FB~C in C.

Definition 2.29. (Fully Faithfulness) A pseudofunctors F:B— C is called fully
fasthful if for each pair of objects object A,B in B the functor F:B(A,B) — C(FA,FB)
is an equivalence of categories.

Theorem 2.30. A pseudofunctor F:B—C 1s an equivalence if and only if it
18 essentially surjecive and fully faithful.

A proof of this theorem can be found in chapter 7.4 of [JY21].

Lastly, something that will become interesting to us later when looking at colimits
in bicategories, is the notion of adjoint pseudofunctors.

25



2 Bicategorical Prerequisites

Definition 2.31. (Adjoint Pseudofunctors) Let B and C be bicategories. Two
pseudofunctors F:B— C and G:C — B are called adjoint if there exist strong trans-
formations n:idg — GF, €:FG —id¢ and invertible modifications I':idf — (eF)o(Fn)
and A:(Ge)o(nG)—idg. We say that F is left adjoint to G, G is right adjoint
to F and the pseudofunctors F and G form an adjunction.

Proposition 2.32. Adjoint functors induce an equivalence of categories
C(FB,C)~B(B,GC)
for each pair of objects B in B and C in C.

Proof. Let f:FB— C be a 1-morphism in B. We can define a morphism f*:B — GC
via

B ™. GFB —¢ GC.

Let g:FB— C be another 1-morphism and 0:f — g a 2-morphism. We can define
a 2-morphism 0°:f* — ¢’ via

Gf
B—>GFB®GC.
Gg

One can check that this defines a functor (—)*:C(FB,C)—B(B,GC). For a 1-
moprhism f:B — GC, we can analogously define a morphism f*:FB — C via

B " FGC —< C.

This also defines a functor (—)*:B(B,GC)— C(FB,C). We will now show that
these two functors form an equivalence of categories. We can construct a natural
transformation idc(rp c) — ((—)°)* with components given by the diagram

F FGf
B L rGrB rGC

r“/’
idpy €re %s €c

FB——F—C

i.e., we have an isomorphism f— (f*)? given by
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f L], foidsg LFB> foergonsg LF“% €coFGfOFTlB:(fb)ﬁ'

That these isomorphism form a natural isomorphism, follows from the equality of
the following two diagrams.

FGg FGg
FnB /_\ FT]B /_\
FB— FGFB FGC FB— FGFB ﬂFGG FGC
V

s g FGf
idFB €rB €c — idFB €rB / €c
g €f

/—\
B fle . C FB C
\f_/ \f/

We thus have a natural isomorphism idg¢rg,c) = ((—)")* and analogously also a nat-
ural isomorphism ((—)*)”=idgs,gc). Therefore they form an equivalence of cate-
gories. [

Example 2.33. Now that we've defined adjoint pseudofunctors, we have the
proper langauge to talk about an example of adjoint pseudofunctors that we've
already seen. Namely, idempotent completion (/\—):Ca‘c—>CatiC is left adjoint to
the forgetful 2-functor Cat;, — Cat. We can now see that indeed defines an ad-
junction.

2.2 Presheaves and the Yoneda Lemma

With the Yoneda Lemma being so prevalent in category theory that some category
theorists claim that more or less everything is a consequence of the Yoneda lemma,
it is of no surprise that there also exists a version of the Yoneda lemma for bicat-
egories. In the following we will only state these versions without proving them
ourselves. The proofs for these are analogous to their 1-categorical counterparts
and can be found in detail in chapter 8 of [JY21].

Definition 2.34. (Bicategory of Presheaves) Let B be a bicategory. We call a
pseudofunctor B— Cat® a presheaf on B. Presheaves, strong transformations and
modifications form a bicategory Bicat(B,Cat°®). We will denote this bicategory
as Psh(B).

Theorem 2.35. (Bicategorical Yoneda Lemma) Let B be a bicategory, A an
object in B, and S:B— Cat®® a presheaf on B. The category of strong transfor-
mations and modifications Psh(B)(B(—,A),S) between the presheaves B(—,A)

27



2 Bicategorical Prerequisites

and S 1s equivalent to the category SA wvia the functor
Psh(B)(B(—,A),S)—SA
X O(A(idA).

Furthermore, let F:B— Cat be a pseudofunctor, the category of strong trans-
formations and and modifications Bicat(B,Cat)(B(A,—),F) between B(A,—)
and F 1s equivalent to the category FA via

Bicat(B,Cat)(B(A,—),F) = FA
xX+— OCA(idA) .

Theorem 2.36. (Bicategorical Yoneda Embedding) Let B be a bicategory. The
pseudofunctor

V:B —Psh(B)
A—B(—,A)
18 fully faisthful, which means it embeds the bicategory B into Psh(B).
Corollary 2.37. Every bicategory B 1s equivalent to a 2-category.
Proof. Psh(B) is a 2-category since Cat°® is a 2-category. The image of X now

defines a sub-2-category of Psh(B) equivalent to B. Thus B is equivalent to a
2-category. [

2.3 Weighted Colimits
We have now laid the necessary groundwork to be able to talk about a bicategorical
variant of colimits.

Definition 2.38. (Weighted Colimit) Let J and B be bicategories. Given a pseud-
ofunctor W:J— Cat®?, which we will call weight, and another pseudofunctor
F:J—B, the colimit of F weighted by W is given in the following way. We
can define a the pseudofunctor

B(F,—):B— Bicat(J,Cat°®?).
e It maps an object A in B onto the pseudofunctor B(F—,A):J— Cat°®.
e For each pair of objects A,B in B, we get a functor
B(F,—):B(A,B) — Bicat(J,Cat®)(B(F—,A),B(F—,B)).

which maps a 1-morphism f:A— B onto the strong transformation f,idf:
B(F—,A) —B(F—,B) and a 2-morphism «:f— f’ onto the modification «id,q,.
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We can now form the pseudofunctor
Bicat(J,Cat®)(W,B(F,—)):B— Cat.

If this pseudofunctor is representable, i.e., there exists an object X and an equiv-
alence of pseudofunctors ¢:B(X,—)— Bicat(J,Cat’®)(W,B(F,—)), we call X to-
gether with ¢ the colimit of F along W or just the weighted colimit of F and we
call @ a colimiting strong transformation.

By the Yoneda Lemma, the data of this strong transformation is equivalent to
the object @x(idx) in Bicat(J,Cat°?)(W,B(F—,X)), i.e., a strong transformation
AW —B(F—,X) such that precomposition with A defines an equivalence

A" :B(X,—) — Bicat(J,Cat®)(W,B(F,—)).

For this thesis we are interested in what it means for a weighted colimit to be
preserved by a pseudofunctor and the analogues of absolute colimits and absolute
categories.

Definition 2.39. (Preservation of Weighted Colimits) Let J,B,C be bicategories,
W:J— Cat®® a weight and F:J—B and G:B — C pseudofunctors. Let colimyF be
the weighted colimit of F with strong transformation A:W — B(F—,colimyF). We
say G preserves that colimit if precomposition with GA:W — C(GF—, Gcolimy, F)
defines an equivalence

(GA)*:C(GeolimyF,—) — Bicat(J,Cat®®) (W,C(GF,—)).

Definition 2.40. (Absolute Weighted Colimit) Let J,B be bicategories, W:J —
Cat®® a weight and F:J— B a pseudofunctor. A colimit of F weighted by W is
called absolute if for every bicategory C and every pseudofunctor G:B—C, it is
preserved by G.

Definition 2.41. (Absolute Weight) Let J be a bicategory. A weight W:J — Cat?
is called absolute if for every bicategory B and every pseudofunctor F:J— B, the
colimit of F along W is absolute if it exists.

The statement that left adjoint functors preserve colimits also holds true in the
bicategorical case.

Proposition 2.42. Left adjoint pseudofunctors preserve weighted colimaits.

Proof. Let J,B be bicategories, W:J— Cat®® a weight, F:J—B pseudofunctor
and A:W — B(F—,colimyF) a colimiting strong transformation. Now let C be an-
other bicategory and G:B— C and H:C—B adjoint pseudofunctors with strong
transformations n:idg — HG and €: GH —idc. We will show that the strong trans-
formation GA:W — C(GF—,GcolimyF) is colimiting by showing that the following
diagram commutes up to isomorphism for all objects C in C
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C(Gcolimy/F,C) &, Blcat(J Cat®?)(W,C(GF—,C))

J(—)" l(—)b

B(colimy, F,HC) SN Bicat(J,Cat®®)(W,B(F— ,HC))

where (—)” is defined pointwise on strong transformation. All of the functors
except (GA)* are known to be equivalences of categories, so we only need to show
that it commutes up to isomorphism. Let f: GcolimywF— C be a 1-morphism in C.
We have an isomorphism (f,GA)’=f°A given by the diagram

Ajla
F i(al colimy, F
. / . fb
NF Tb\j () MNeolimy F
HGH HGcolimy F
) W colimyy Hf HC

where j is an object in J and a an object in Wj. We can also read off of this diagram
that this isomorphism is natural. Thus G preserves the weighted colimit. 0

Definition 2.43. (Weighted Colimits in Locally P Bicategories) We can also define
the notion of a weighted colimit in a locally P category, where P is a property of
categories. Let Catp be the full subbicategory of Cat of all categories that have
property P and let B be a locally P bicategory. Let J be another bicategory and
F:J—B a pseudofunctor. A weight is now a pseudofunctor W:J— Catp®. A
weighted colimit of F along W now consists of a strong transformation A:W —
B(F—,X) such that

A" :B(X,A) — Bicat(J,Cat}®) (W,B(F,A))

defines an equivalence of categories for all objects A in B. In general every weighted
colimit in a locally P bicategory can be regarded as a weighted colimit in an
ordinary bicategory by simply regarding the weight W:J— Cat;® as an ordinary
weight W:J— Cat®®. But by restricting ourselves to locally P bicategories and
weights that take values in Catp, we will be able to find weights which are absolute
and which wouldn’t be absolute in the general case. The most relevant case for
this thesis will be that of locally idempotent complete bicategories.
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2.4 Weighted Colimits in Cat

In many ordinary categories we can give explicit formulas for calculating certain
colimits. By explicitly calculating a colimit we usually also gain explicit formulas
for the universal property of a colimit which can be used to understand how the
colimit interacts with other objects. In the case of the 2-category Cat, we also
find an explicit formula for a colimit analogous to the one in the 1-category Set.
This then also allows us to understand some weighted colimits in other categories.
By explicitly constructing a weighted colimit for an arbitrary bicategory J, weight
W:J— Cat®® and pseudofunctor F:J — Cat, we also show that Cat is cocomplete.

Construction 2.44. First we choose a set of objects ObJ for J. We look at the
diagram

do dO
[T Wi"=<I(',5") xJG,i) xFj 4, [T Wi'xJG,i") xFj P [ T WixFi
d d
3)i',j"'€ObJ —2 4 j,j’eOb] — 1 5 jeObJ

where the maps are defined in the following way

— (a,g,F(f)x),
a,g,f,x)— (a,gf,x),

— (W(g)a,f,x),
(a,F(f)x),
(W(f)a,x),

x) — (a,idj,x).

d9:(a,g,f,x)

dj:(

2
d3:(a,g,f,x)
O:(a,f,x)—

d;:(

(a,

S

dy:
1i(a,fyx) —
0.
0

We now define the category colimyF by taking the category ]_[].eObJWj xFj and
freely adding isomorphism determined by df and d] that are subject to relations
given by s, d9, d} and d3.

For each pair of objects j,j’ in J and an object (a,f,x) in Wj’' xJ(j,j’) x Fj we freely
add an isomorphism

Yaix: (@, F(f)x) = (W(f)a,x)
which assemble into a natural transformation

Yot (5 F(=) =) = (W)=, =)W' x I (5,)) x Fj — colimw F.

These natural transformations have to satisfy the following two conditions. For
all j,j',j” €Obl, x in Fj, f:j—7’, g:j—j” and a in Wj”, the diagram
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(a,F(g)F(F)x) =20 (W(g)a,F(f)x) 2“5 (W(H)W(g)a,x)
l(idu,indx) l(wzida,idx)
(a,F(gf)x) (W(gf)a,x)

has to commute and for all j€OblJ, x in Fj and a in Wj, the diagram

(a,idpx) —— (a,x) —— (idwj;a,x)
J(ida,Foidx) J(Woida,idx)
. Ya,id; ,x .

(a»F(ldj)X) J (W(ldj)a>x)

has to commute. We call these two diagrams the naturality and unitality con-
ditions of y. colimy/F is now the category obtained by adding these ismorphism
subject to the given relations freely to ]_[jGObJWj xF. We now also define the
functors

Y :W(j) xF(j) — colimyF
which are given by inclusions since W(j) x F(j) is a subcategory of colimyF.
We can now define a strong transformation
A:W — Cat(F—,colimyF):J— Cat®®.

For each object j in J, we have a 1-morphism A;:Wj— Cat(Fj,colimyF) given by
Aj(a)(x)=7v;(a,x)=(a,x) for each a in Wj and x in Fj. Since v; is a functor, both
A; and Aj(a) also define functors.

For each pair of objects j,j’ in J, we also have a natural transformation
A:Aj Cat(F—,colimyF) — (A).W:J(3,)') — Cat(Wj’,Cat(Fj,colimwF))
with component morphisms A¢: Cat(Ff,colimwF)A; — AWf which are defined by

Atax =Ya,rx: (Cat(Ff,colimwF)A; (a)) (x) =Ay (a) (F(f)x)
(a,F(f)x) = (W(f)a,x) =N (W(f)a)(x)

for each a in Wj’ and x in Fj. The naturality of A and A; and A¢, all follow from
the naturality of y. Lastly we need to check that A satisfies the naturality and
unitality conditions, this follows since vy needs to satisfy its own naturality and
unitality conditions.

Theorem 2.45. Given a bicategory J, a weight W:J—Cat®® and a pseudo-
functor F:J—Cat, construction defines a weighted colimit of F along
W.
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Proof. We next need to check that precomposition with A: W — Cat(F—,colimyF)
defines an equivalence of pseudofunctors

Cat(colimy,F,—) — Bicat(J,Cat?)(W,Cat(F,—)).
For this it suffices to check that it defines an equivalence of categories
Cat(colimy F,C) — Bicat(J,Cat®)(W,Cat(F—,C))

for each category C. As it turns out, a functor colimyF—C is determined by the
same data as a strong transformation W — Cat(F—,C) just presented in different
ways. This will lead to an isomorphism of categories.

A strong transformation e: W — Cat(F—,C) is given by a J-indexed family of func-
tors €;:Wj — Cat(Fj,C) and for each morphism f:j—j’ in J a natural isomorphism
es:Cat(Ff,C)ey — e;WF:Wj' — Cat(Fj,C) such that the e; are natural in f and sat-
isfy the naturality and unitality conditions.

Using the fact that for categories C;,C;,D we have an isomorphism of categories
Cat(C1 X Cz,D) = Cat(C1 ,Cat(Cz,D))

given by currying, know that the family (ej)jcony is equivalent to a J-indexed
family of functors €;:Wj xFj—C and the e turn into natural transformations

Efiéj/ (—,F(f)—) — EJ (W(f)—,—) IW]., X F) —C
Naturality in f now means that they assemble into a natural transformation
€:€y(—F(=)—) = &(W(=)——):Wj'xJ(j,j') xFj = C.

The naturality condition tranlates into the following commutative diagram

& (@, F(g)F(F)x) 2% &, (W(g)a, F()x) 225 & (W/(H)W(g)a,x)
Fj" (idq,F?idy) Fj (W2idq,idx)

€a,gf,x

€ (a,F(gf)x) €(W(gf)a,x)

which has to hold for all objects j,j’,j” in J, morphisms f:j—j’ and g:j’ —j” and
objects a in Wj” and x in Fj. The unitality condition tranlates into the diagram

E)’(a,id]:jX) —_— Ej(a,x) —_ Ej(idwj(l,X)

Fi (ida,FOidx) Fj (WOid g, idy)

€a,id;,x

&(a,F(idj)x) ’ €(W(idj)a,x)
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which has to commute for all objects j in J, a in Wj and x in Fj. We can already see
that these are exactly the conditions we asked of vy when constructing colimwF.
We will now look at the data that a functor G:colimwF—C consists of. Since
colimyF was constructed by adding isomorphisms to the category ]_[ieObJWj x Fj,
the functor G consists a family of functors Gj:WjxFj—C that also has to map
the components vy on isomorphisms in C that have to satisfy the same properties
as y. So we have a natural transformation

G(v-,--):G(—F(=)=) = G(W(=)—,—):Wj' xI(j,j') xFj = C

and the components of this natural transformation also have to satisfy the unitality
and naturality conditions. So we indeed see that a functor colimy,/F— C consists of
the same data as a strong transformation W — Cat(F—,C) and the presentation of
this data only differs by currying. This currying is also induced by precomposition
with A since given a functor G:colimyF—C, the strong transformation G, A:W —
Cat(F—,C) is defined by

(G.A) (@) () =(G.A) (@) (x) = (GA;(@))(x) = G(As(a) (x)) = Gla,x)
for objects j in J, a in Wj and x in Fj, and by
(G*}\)f,a‘x = G}\f,a‘x = G‘Ya,f,x

for objects j,j’ in J, a morphism f:j—j’ and objects a in Wj’ and x in Fj. To show
that this induces an isomorphism of categories

Cat(colimyy F,C) = Bicat(J,Cat)(W,Cat(F—,C))

we also have to show that a natural transformation between such functors also
only differs by currying from a modification between such strong transformations.
Let e,n:W— Cat(F—,C) be two strong transformations and let I': € — 1 be a modi-
fication between them. I" consists of a J-indexed family of natural transformations

Ij:e; —m;:Wj— Cat(Fj,C)

which since I' is a modification has to satisfy a certain property. Using currying,
this the natural transformations I correspond to natural transformations

i€ —=n:WjxFj—C

and the property they need to satisfy can be written as the diagram

& (a,F(Fx) =5 &(W(F)ax)

Jri’,af(f)x T, w(f)a,x

ly (@, F(F)x) =% 7(W(f)a,x)

34



2 Bicategorical Prerequisites

which has to commute for all objects j,j’ in J, morphisms f:j—j’ and objects a in
Wj’ and x in Fj. Now let G,H:colimyF—C be two functors and let @:G—H be a
natural transformations. We've already seen that due to the structure of colimy,/F
the two functors G,H consists of J-indexed families of functors Gj,H;:WjxF —C
together with the natural transformations G(y) and H(y). A natural transfor-
mation ¢@:G—H now consist of a J-indexed family of natural transformations
@;:Gj— H; which also have to be natural with respect to y. This can be repre-
sented by the diagram

Gy (a,F(F)x) 20 G (W(f)a,x)
l‘Pj',m,me) l@j‘(wma‘m

Hy (@, F(F)x) "2 1 (W(f)a,x)

which has to commute for all objects j,j’ in J, morphisms f:j—j’ and objects a
in Wj’ and x in Fj. So now we also see that a natural transformation ¢:G—H
between functors G,H:colimyF—C consists of the same data as a modification
I':e —n between strong transformations e,n: W — Cat(F—,C) and the presentation
of this data also only differs by currying.

We have therefore shown that precomposition with A: W — Cat(F—,colimy/F), which
does the same as currying, actually defines an isomorphism

A*:Cat(colimyF,C) — Bicat(J,Cat)(W,Cat(F—,C)).

for each category C. Thus colimyF together with A forms a colimit of F along
W. O

Corollary 2.46. The bicategory Cat of categories i1s cocomplete, i.e., for every
bicategory J, every weight W:J — Cat°® and every pseudofunctor F:J— Cat the
colimit of F weighted by W ezists.

We also want to show that Cat;. is cocomplete as a locally idempotent complete
bicategory. For this we will first have to show that it actually is locally idempotent
complete.

Lemma 2.47. For a category C and an idempotent complete category D, the
category Cat(C,D) of functors and natural transformations is idempotent com-
plete.

Proof. Let F:C—D be a functor and p:F—TF an idempotent natural transforma-
tion, i.e., for every object C in C the morphism pc:FC—FC is an idempotent.
Since these are morphisms in D, we can choose a splitting for every idempotent
Pc- We now choose for every C in C an object SC in D and morphisms fc:FC—SC
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and gc:SC—FC such that gcfc=pc and fcge=idsc. We can now turn S into a
functor. Let h:C—D be a morphism in C. We define S(h)=fpF(h)gc. We now
have S(id¢) =fcF(idc)gc =fcgec =idsc and for another morphism k:D — E, we have

S(k)S(h) =feF(k)gpfoF(h)gc=feF(k)ppF(h)gc =feF(k)F(h)pcgce
:fEF(kh)gcfch :fEF(kh)gcldSC:S(kh)
which shows that S defines a functor. We lastly need to show that the fc and

gc define natural transformations f:F—S and g:S—F. For this we need to check
that the following two diagrams commute.

rc "™, p sc M, sp
lfc J/fD lgc J/QD
sc 2, sp Fc ™. D

We can show
S(h)fc :fDF(h) ngC :fDF(h)pC :poDF(h) :fD ngDF(h) :ldSDfDF(h) :fDF(h)
and thus f:F— S defines a natural transformation and

goS(h)=gpfpF(h)gc=ppF(h)gc=F(h)pcgc=F(h)gcfcgec=F(h)gcidsc =F(h)gc

and thus g:S—TF defines a natural transformation. The natural transformations f
and g now satisfy gf=p and fg=ids and thus p splits. O]

Corollary 2.48. The bicategories Cati. and Cat® are locally idempotent com-
plete.

Theorem 2.49. The locally idempotent complete bicategory Cat,. of idem-
potent complete categories 1s cocomplete, i.e., for every bicategory J, ev-
ery weight W:J— Caty’ and every pseudofunctor F:J—Cat;. the colimit of
F weighted by W ezists.

Proof. Let J be a bicategory, W:J— Cat;® a weight and F:J— Cat;. a pseudo-
functor. We can regard both W and F as pseudofunctors taking values in Cat. By
the previous theorem we now know that we can construct a category C along with a
strong transformation A:W — Cat(F—,C) such that we have a natural equivalence

A*:Cat(C,—) — Bicat(J,Cat°?)(W,Cat(F,—)).

—

Since we have a left adjoint pseudofunctor (—):Cat — Cat;,, we have a natural
equivalence

e~ J—

((—)A)*: Caty(C,—) — Bicat(J,Cat®) (W, Cats((—)F,—))
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—

where (—)A is defined by

—

for each j in J and a in Wj. Since F already takes values in Cat;, F and (—)F are

—

equivalent with an equivalence given by (;:F— (—)F which has components given
by r:Fj —Fj. We also know that the diagram

LFj C

1—— D

A(a)
—
L

Aj(a)
—

aA— O

-

)

commutes. These two facts combined tell us that we have an equivalence
((1e).A)": Cat;c(C,—) — Bicat(J,Cat®) (W, Cat; (F,—))

and since W takes values in Cat;® and Cat,. is locally idempotent complete, we
get the desired result that we have an equivalence

((tc).A)": Caty (C,—) — Bicat(J,Cat;?) (W, Cat; (F,—))

]

Another bicategory that interest us is the bicategory of presheaves over a given
bicategory.

Theorem 2.50. Let B be a bicategory. The bicategory Psh(B) is cocomplete.

Proof. Let J be a bicategory, W:J — Cat®® a weight and F:J— Psh(B) a pseudo-
functor. We can construct a weighted colimit of F along W in the following way.
Let A be an object in B. We now have the pseudofunctor F(—)(A):J— Cat and
since Cat is cocomplete the weighted colimit of F(—)(A) along W exists, i.e., we
have a colimiting strong transformation Ay :W — Cat(F(—)(A),colimyF(—)(A)).

We now define the presheaf colimy F:B— Cat®® via colimyF(A)=colimy,F(—)(A).
Let B be another object in B and f:A—B a morphism. We can now define
the strong transformation F(—)(f)*Ax:W — Cat(F(—)(B),colimy/F(A)) which has
components (F(—)(f)*Ax);(a) =Aa;(@)F()(f)

F(3)(f) Aaila)
—

F(3)(B) F(j)(A) —— colimwF(A)
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2 Bicategorical Prerequisites

for each j in J and a in Wj. By the universal property of the colimit, we get a
morphism

colimyy F(f):colimy F(B) — colimy/F(A)

and an isomorphism A;:colimyF(f),Ag — F(—)(f)*Ax which we can represent by the
following diagram

F§)(B) — 2 F(j)(A)

)\'a
As,j(a)l / lAA,j(a)

colimyF(B) —— colimy/F(A)
colimw, F(f)

For a second 1-morphism g: A — B and a 2-morphism 0:f— g, we get a morphism
of strong transformations

F(=)(0) Aa:F(=) (F) Aa = F(=)(9)"Aa

which gives us a morphism colimyF(0):colimyF(f) — colimyF(g). This can be
represented as

F(j)(B) ﬂF(j)(G) F()(A) F(j)(B) F(j)(A)
\/ Agia
FGI(T) e

7\B,j(ﬂ) A 7\A,j(a) = 7\13,]'((1) 7\A,j(a)
V colimy, F(g)

colimyy, F(B) colimyyF(A) colimWF(B)WcoanHeJ colimyyF(A)

\_/ \_/

colimy F(f) colimy F(f)

The presheaf colimyF is now well defined along with a strong transformation
A:W — Psh(B)(F,colimwF) with components Aja(a) =Ax;(a). We must now show
that A defines a colimiting strong transformation. Let x:W —Psh(B)(F,S) be
another strong transformation for a presheaf S. For an object A in B, we can then
define the natural transformation k. :Psh(B)(F(—)(A),S(A)) and by the universal
property of the colimit, we get a morphism @a:colimyF(A)—S(A) such that
Ka=(@a):Aa. The @A assemble into a morphism of presheafs ¢:colimy,F— S and
we get an isomorphism k= @,A. This shows that A defines a colimit. O

Lastly, we also want to show that the bicategory Psh;. (B) of presheaves taking
values in idempotent complete categories is cocomplete as a locally idempotent
complete bicategory.
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2 Bicategorical Prerequisites

Lemma 2.51. For a bicategory B and a locally idempotent complete bicategory
C the bicategory Bicat(B,C) is locally idempotent complete.

Proof. Let F,G:B—C be pseudofuncors, «:F— G a strong transformation and
p:ax— o an idempotent modification, i.e., for each object A in B the morphism pa:
aa — axa in C(FA,GA) is idempotent. Since C is locally idempotent complete, we
can choose a splitting for each p for all A in B. We therefore have 1-morphisms s :
FA — GA, and 2-morphisms fa:oa —sa and ga:sa — xa such that gafa=pa and
faga=id,,. s:F— G forms a strong transformation with component 2-morphisms
sh:G(h)sy —sgF(h) given by
F(h)

A——FB

XA
sal 9A Xn fa s B
— o —

GA—=77—GB

G(h)
for a 1-morphism h:A—B in B. f:x—s and g:s— « now form modifications such
that gf=p and fg=id, and thus p splits. O]

Corollary 2.52. Let B be a bicategory. The bicategory Psh;. (B)=Bicat(B,Cat;”)
of idempotent complete presheafs on B 1s locally idempotent complete.

Combining the last two theorems and their proofs also yields the following result.

Corollary 2.53. Let B be a bicategory. The locally idempotent complete bi-
category Pshi.(B) 2s cocomplete.
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3 Karoubi Completion

Having now laid the bicategorical prerequisites, we can continue to look at the
bicategorical analogue of idempotent completion. From now on, we will suppress
coherence data whenever appropriate. Formally, this can be justified since every
bicategory is equivalent to a 2-category.

3.1 2-Idempotents and their Splittings

We will now go on to define the bicategorical analogue of an idempotent and of
its splitting. These definitions follow |[GJF19].

Definition 3.1. (2-Idempotent) Let B be a bicategory. A 2-idempotent in B
consists of an object A in B, a 1-morphism p:A — A and 2-morphisms m:p? —p
and A:p —p? such that

(idyom)-(Aoid,) =(meoid,)-(idpoA)=A-m and
m-A=id,.

We denote a 2-idempotent by (A,p,m,A) and whenever it is clear from context,
we will simply denote it as A,.

Definition 3.2. (2-Idempotent Splitting) Let B be a bicategory and let (A,p,m,A)
be a 2-idempotent in B. A splitting of A, is given by an object B in B, 1-
morphisms f:A— B and g:B— A, 2-morphisms ¢:fog—idg, P:idg —fog and an
isomorphism y:gof—p such that ¢ P =idig,, m=vy-(idgo@oids)-(y'oy™') and
A=(yovy)-(idgopoids) -y~!. We say that the 2-idempotent p splits and we call B a
retract of A. We will later show that in certain cases a splitting of a 2-idempotent
is unique up to equivalence.

Definition 3.3. (Idempotent Completeness) We call a bicategory B 2-idempotent
complete if it is locally idempotent complete and if every 2-idempotent B splits.

Definition 3.4. (Free Walking 2-Idempotent (Splitting)) We will define the bicat-
egory #; to be the bicategory with two objects X and Y, 1-morphisms freely gen-
erated by f:X—Y and g:Y — X and 2-morphisms freely generated by ¢:fog—idy
and P :idy — fog satisfying the relation ¢-\=id;q,. We will call this bicategory
&) the free walking 2-idempotent splitting.

The bicategory &, is defined to be the full subbicategory of #; on the object X.
We will call this bicategory the free walking 2-idempotent. We then of course
have a fully faithful pseudofunctor t:é, — &;.
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3 Karoubi Completion

Remark 3.5. We can now also think of a 2-idempotent in B as a pseudofunctor
F:&; — B since every such functor determines a 2-idempotent and we can define
such a functor simply by choosing a 2-idempotent in B. Furthermore, a splitting
of F is then given by a functor F': &, — B such that F't~F.

3.2 Karoubi Completion of a Bicategory

In the following chapter, we define the Karoubi completion of a locally idempotent
complete bicategory B and show that it forms an idempotent complete bicategory
and furthermore that it is universal among all bicategories with this property.

Definition 3.6. (Karoubi completion) Let B be a locally idempotent complete
bicategory. We define the Karoub: completion B to have the following data.

e Objects in B are 2-idempotents in B, i.e., an object in B is a collection
(A,p,m,A) consisting of an object A in B, a 1-morphism p:A— A in B and
2-morphisms m:p?—p and A:p—p? in B such that

(idyom)-(Aoid,) =(meoid,)-(id,oA)=A-m and
m-A=id,.

Graphically, this can be represented as follows.

\

Two other useful properties follow from these requirements, namely associa-
tivity and coassociativity which graphically can be written in the following
way.
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3 Karoubi Completion

m-(meidg) = m-(dyem) (80D =(d, ) A

With this, (A,p,m,A) forms a special non-unital non-counital Frobenius al-
gebra. Whenever it is clear from context, we will denote (A,p,m,A) as A,,.

For each pair of objects (A,p,m;,A,) and (B,q,mq,4,) in B, we have a Hom-
category @(Ap,Bq). A 1-morphism in B is a collection (f,<1,p,>,A) consisting
of a 1-morphism f:A—B in B , and 2-morphisms <:fop—f, p:f—fop,
>:qof—1f and A:f — qof in B such that

(idfomp)'(poidp):(Qoidp)'(idfoAp):p'<]3 <-p=idy,
(idgot>)- (Aqoids) = (mqoids)- (idgoA) =A- >, > -A=idy,
> -(idqo <) =<1-(>0id,) and (Aoidy)-p=(idqop)-A.

Whenever it is clear from context, we will denote (f,<,p,>,A) as f:A, — B,
or even just as f. Graphically, this can be represented as follows.

D>
1

]

L N
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1

1
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3 Karoubi Completion

We can also think of a 1-morphism in B as a bimodule over special non-unital
non-counital Frobenius algebras with <1 and p being the the right (co)action
and > and A being the left (co)action.

A 2-morphism between (f, <, ps,>¢,A¢) and (g,<g,Pg4,>4,Aq) is @ 2-morphism
¢@:f— g in B such that

(P'<]f:<]g'((poidp)> ((poidp)'pf:pg'(P>
@ >¢=D>g4-(idqo) and (idqo@)-Ar=A4- .

This can be graphically represented in the following way.

Vertical composition, i.e., composition of 2-morphisms is simply given by
the composition of 2-morphisms in B. It follows that identity 2-morphisms
are given by the identity 2-morphisms in B. This turns I@%(Ap,Bq) into a
category.

Composition of 1-morphisms (or horizontal composition) is defined as fol-
lows. Let f:A, — By and g:B;— C, be 1-morphisms in B. We can now form
the idempotent

Kgof = (idgo>¢) - (pgoids) = (g 0idy) - (idgoAs) :gof — gof.

We define the composition of f and g as the splitting of this idempotent. We
can graphically check that these two ways of writing this morphism do in
fact coincide and that it forms an idempotent.
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3 Karoubi Completion

admits a splitting and thus we can choose a 1-morphism g®qf:A— C and
2-morphisms @:gof —g®,f and h:g®,f— gof such that ¢-P=idye,r and

Since B is locally idempotent complete, we know that the idempotent kyo¢
- @ =Kgor, which we write graphically in the following way.

1
Fo----- '
1 1
"7////4 "
| "
Lo oo oo 1
L e =01
I m 1
ARSCIERTR
1 1
Lo Wi

We can now define right-p (co)actions, and left-r (co)actions on g®,f as

follows.

1
Y r//m_

_f ,ﬂ///////////n_
1 _ 1

This in fact turns it into a morphism g®4f:A, — C,. Horizontal composition
44

of 2-morphisms is defined in the following way.



3 Karoubi Completion

ColE e
5 | A3 | A

This turns composition into a functor
CA,Ba,Cr i B(Bg,Cr) X B(A,,Bq) = B(A,, Cy).

It is important to note here that when defining the Karoubi completion of
a given bicategory B, we have to make a choice for each pair of morphisms
to be able to define this functor. All possible choices will lead to equivalent
bicategories, but we have to make these choices none the less.

Let D be another object in B and h:C,— D, another 1-morphism. The
1-morphisms (h®,g)®,f:A,— D and h®,(g®,f):A, —Ds are now both
splittings of the idempotent given by

-

and thus we have a unique isomorphism ay g¢:(h®,g)®,f—h®,(g®4f) and
in general we get a natural isomorphism

QAA,,Bq,Cr,Ds -CA, Bg,Ds (CBq,CT,DS X 1d@(Ap’Bq)) — CA,,Cr,Ds (ld@(CT,DS) X CAp,Bq,CT)-

The identity 1-morphism on A, is given by (p,m;,A,,m;,A,). Let f:A, — B,
and g:C,— A, be 1-morphism. We now have the following.

i

-
"
o
~



3 Karoubi Completion

Since splittings are unique up to unique isomorphism, we have isomorphisms
lg:p®pg— g and r:f®,p—f. These form natural isomorphism

le, A, €A A, (Py—) —1idgc, A, and

TApbg-CApApBg (—p) Hld@(Ap’Bq)-

e Since both the associator and left and right unitors are given by unique
isomorphisms between colimits, it follows immediately that the triangle and
pentagon axiom both have to hold.

We first will show that B is a completion of B in the sense that B embeds into B
and is equivalent to it if B was already idempotent complete.

Proposition 3.7. For every locally idempotent complete bicategory B, there
exists a fully faithful pseudofunctor ts:B—B. If B s furthermore t1dempotent
complete, this functor 1s an equivalence.

Proof. We define 1y to map the object A in B onto (A,ida,idia, ,idia, ) in B. 1 maps
1-morphisms f:A—B in B onto the the morphism (f,ids,idy,id¢,id¢):Aja, — Bid,
and 2-morphisms @:f—g in B onto ¢:f—gin B.

We now note that, for objects A,B in B, every morphism in B between A, and
Big, is of the form (f,id¢,ids,id¢,id¢) where f is an arbitrary morphism f:A—B in
B. Since a 2-morphism between 1-morphisms of the form (f,ids,ids,ids,id¢) and
(g,idg,idg,idg,idg) is also just an arbitrary 2-morphism ¢:f— g, we see that 15 is
fully faithful.

Now assume that B is idempotent complete and let (A,p,m,A) be an object in
B. We want to show that (g is essentially surjective, i.e., there exists some B in B
such that A, ~zB. We know that the 2-idempotent (A,p,m,A) splits in B, which
means there exists an object B in B, 1-morphisms f:A—B and g:B— A in B,
2-morphisms ¢:fog—1idg, P:idg — fog and an isomorphism y:gof—p such that
@ =idiq,, m=y-(idgogoids)-(y oy ') and A=(yoy)-(idgopoids) -y

We can now define the morphisms

(f, (poidy)- (idsoy ™), (idsoy) - (Woids),ids,ids) : A, — Big, and
(g)idg>idg) (idgo(P) ' (Y_] Oidg))(yoidg) : (1dg Oll))) :Bidg _>A‘p

and, with these, we now have g®iq,f=gof=p=ida, and f®,g=idg. Thus it
follows that A, ~Biq, and 1z:B— B is an equivalence of bicategories. O

For B to be the completion of B under splitting 2-idempotents, we want B itself
to be idempotent complete, which we will show in the following.
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3 Karoubi Completion

Proposition 3.8. For every locally idempotent complete bicategory B, the bi-
category B is idempotent complete.

Proof. We first need to show that B is locally idempotent complete. Let A,
and B4 be objects in B, (h, <h,Phy>hyAn) 1A, — By @ 1-morphism and p:h—h an
idempotent 2-morphism. Since B is locally idempotent complete, we know that
the idempotent p splits into 2-morphism f:h—s and g:s—h such that gf=p
and fg=ids where s:A— B is a 1-morphism in B. Note that, a prior, s is not a
morphism in B but we can turn s into a morphism s:A, — B, with the following
left and right (co)action.

E__J
—

With this definition of s, f and g also become 2-morphisms in B and therefore
split the idempotent p. Thus B is locally idempotent complete.

Now, let (A,p,m,A) be an object in B and (e,<,p,>,A) a 2-idempotent on A,
which means we have morphisms m®:e®,e—e and A?:e— e®,e such that
(ide®@pm&)- (AL ®pide) = (M @y id,) - (1de ®p AT ) =AT-m? and
me-A? =id,.

We want to show that this 2-idempotent splits. From the definition of e®,e we
have 2-morphisms ¢:ece—e®,e and P:e®,e— eoe such that ¢-1h=ideg,. and

P @ =Keoe-
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3 Karoubi Completion

Combining these we get morphisms m.=m%-@:ece—e and A.=1)-A¥:e—eoce.
Graphically, we can represent these in the following way.

e e N
A | A AL AL B
mg AP

Therefore (A,e,me,A.) is an object in B and furthermore we can now define mor-
phisms (e, <,p,Me,Ae):Ap — A and (e,meA,,>,A):A.— A,. Composing them in
IE%, we get e®.e=e:A,—A, and e®,e:A.—A.. As we have morphisms m¥:
e®pe—e=ida, and A¥:idx, =e—e®,e, we have shown that (e,<,p,>,A) splits
in B and thus B is idempotent complete. [

Since a 2-idempotent p: A — A in B defines a 2-idempotent p: Aiq, — Aiq, in Iﬁ%, we
also get the following statement.

Remark 3.9. For an object A, in I@%, A, is a splitting of the 2-idempotent p on
Aid,, -

Lastly, we want to show that the Karoubi completion B is universal among all
possible idempotent completions of B, which is why we are able to call it the
idempotent completion of B. What we mean by universal is that for each pseud-
ofunctor F from B into an arbitrary idempotent complete bicategory C, there is a
pseudofunctor F':B— C such that Fiz =F.

48



3 Karoubi Completion

Theorem 3.10. For each locally idempotent complete bicategory B and 1dem-
potent complete bicategory C, we have an equivalence of bicategories

Bicat(B,C) ~ Bicat(B,C)

induced by precomposing with Lg.

Proof. First, we want to show that for every pseudofunctor F:B— C, there ex-
ists a pseudofunctor F:B— C such that Fuz~F, ie., precomposition with (g is
essentially surjective. For a given pseudofunctor F:B— C we can define the pseud-
ofunctor F:B— C which maps a 2-idempotent (A,p,m,A) onto the 2-idempotent
(F(A),F(p),F(m),F(A)) and acts analogously on 1l-morphisms and 2-morphisms.
The following diagram now commutes up to equivalence

B Lc

oy — O

F
—
7
—

&—&=

Since C is an idempotent complete bicategory, (¢ is an equivalence and we can
choose an inverse (~'. We now define F=1-"'F and have Fiz=1c 'Fig ~ 1 'icF~
F.

Secondly, we need to show that precomposition with 1z is essentially surjective
on Hom-categories. Let F,G:IE%—)C be pseudofunctors. We want to show that
for each strong transformation ¢:Fiy — Gug, we can find a strong transformation
¢@":F— G such that @'i(g=¢@. For a given ¢:Fig— Gig, we define such a ¢’ by
defining an idempotent and then setting (pjl\p to be its splitting. This idempotent

Ya,:G(p)@aF(p) = G(p)@aF(p) is given via

/ Fp)

ldA F ldA

—1
A (p/ Pa

G(AldA —>G (Adn)
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3 Karoubi Completion

and we now have a splitting cpj\p:F(Ap)—>G(Ap) along with morphisms o, :

G(p)eaF(p)— (pj\p and fBa, :(pj\p — G(p)@aF(p) which satisfy oa,Ba, :id(pfAp and
Ba,xa, =Ya,- We define @} on a morphism f:A, — B, via

F(Ap)&F(Bq)
F(p)_~"Flq)
F(AidA) ﬂ F(Bidg)
©On,| Ba, |®Pa Y g XB, |,
— G(f) —
G(AidA)—>G(BidB)
G(p)_~"G(q)
G(Ap)Lﬂﬁ(Bq)

where the top morphism is given by the image of

1

1

]

1
el
1

1

1

1

1
—q,
1

A
---I
1

1

1
1
1

1

1

1
AR

_o
______I
l

Q.

1

i)
---I
;

ey

1

J

1

]

I 1

1

1

A

under G. This turns ¢’:G —F into a strong transformation. We now need to show
that ¢'z=0, i.e. (pj\idA =@a. If we look at the idempotent va,,, we see that it
splits via @ and thus (pj\iciA = Qa.

Last, we need to show that precomposition with 1 is fully faithful on Hom-
categories. Let F,G :B—C be pseudofunctors and ¢@,P:F— G strong transforma-
tions. We want to show that we have an isomorphism

Bicat(B,C)(F,G)(¢,)) =Bicat(B,C)(Fiz,Gtz) @iz, Piz).

Let T: oy — P be a modification. We can construct a modification I": @ —
with components F/’\p :@a, —Wa, via the following.
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3 Karoubi Completion

This defines a modification I":F— G and we can see that this construction defines
an inverse on the level of modifications. Thus precomposition with g is fully
faithful on Hom-categories and we have an equivalence

Bicat(B,C)~Bicat(B,C).
[

Remark 3.11. Without going into technical details, theorem |3.10| is a conse-
qguence of the fact that idempotent completion should form a left adjoint trifunctor
(/—\) :Bicaty;. — Bicat;. from the tricategory of locally idempotent complete bicat-
egories, pseudofunctors, strong transformations and modifications into the full
subtricategory of idempotent complete bicategories, analogously to theorem [1.12]
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4 Cauchy Completion

We are now going to define the Cauchy completion of a bicategory, which is its
completion under absolute weighted colimits. We will see, that it is universal
among all bicategories that have this property. Before we get to this, we will show
that a 2-idempotent splitting in a locally idempotent bicategory is a weighted
colimit. Since 2-idempotent splittings are preserved by every pseudofunctor, they
in fact define absolute weighted colimits.

4.1 2-Idempotent Splittings as Absolute Weighted Colimits

We briefly recall definition of the free walking 2-idempotent splitting &,. #;
has two objects X and Y and a 2-idempotent on X which splits via Y given by
morphisms f:X—=Y, g:Y—=X, ¢:fg—idy and P:idy—fg. The free walking 2-
idempotent &, is the full subbicategory of #, on X.

Proposition 4.1. Let B be a locally idempotent complete bicategory and let
(A,p,m,A) be a 2-idempotent which corresponds to the pseudofunctor F:&,; —
B. The weighted colimit of F along the weight #;(1—,Y): &, — Cati. determines
a splitting of A, and every splitting determines a colimit of F weighted by

‘Z(L_>Y)'

Proof. Let B in B be a weighted colimit with colimiting strong transformation
A:#(1—Y)—>B(F—B). We want to show that this defines a splitting of the
idempotent determined by F. We have a functor Ax:#;(X,Y)—B(A,B) and a
1-morphism f=Ax(f):A — B.

We can define a strong transformation k:#;(1—,Y) —>B(F—,A) via

Kx:M2(X,Y) = B(A,A)
f—=p
(@id¢: fgf—f)— (m:p?—7p)
(Wide: f—fgf)— (A:p—p?)

This fully defines k up to isomorphism since the action of &,(X,X) on #;(X,Y)
generates every other object and morphism in #;(X,Y). By the universal property
of the weighted colimit, we now have a morphism g:B— A such that g.A=«
given by a modification I':g.A— k. This modification also gives us the desired
isomorphism y =Tx: g? —p.

We now also need to find morphisms @:F@—)idg and 1T):idg —n?§ such that (T)ﬁ):
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idig4,. For this we use the equivalence
A.:B(B,B) — Bicat(d,,Catic) (#(1—,Y),B(F—,B))

by which we know it is sufficient to find modifications ®:(fg),A—A and W:A—
(fg).A such that ®¥=id,. Similar to above, it is sufficient to give ®x and Wx¢
to define ® and ¥ up to isomorphism. These we can define by

Ax (of)
~ ~ ~ ~ ~ /_N ~
Tom(=Tgl = fp = Adlfgf)  Ax(f)=f
Y
~_
Ax (bf)

where Ay is given by

a:0%Y) 95 ay(x,Y)

Agf
AXJ{ ’ JAX

B(A,B) — B(A,B)

One can clearly see that these satisfy ®W=id, and thus they induce morphisms
¢:fg—1idp and :idg — fg such that ¢\ =id;q,. We now need to check the com-
patibility between ¢ and 1\ and m and A. This we can represent via the diagram

g9t
gfgf T gf
lﬂ/ Y
7~ m

pr\é/

P

We know that the diagram

gAx (of)

~ = Iy Pgr ~ -
gAx(f)gf —— gAx(f)p —— gAx(fgf) _ gAx(f)

~Px(Vf) -
rx,fgfl lrx,f
- “x(@f) ™
~ kx (f)y Kgf xi®
kx(f)gf —— kx(f)p —— kx(fgf) Kx (f)

~_
kx (bf)

rx,faffi Ix,rp

commutes and this is the same diagram as the following
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o~ 9fy  ~=  GAgr
gfgf gfp ghx(fgf@

yﬁ]ﬁi Vpl rx,fgfl Jy
N o /?1\
~ PY 2 = 2
pgf 13 LN

which gives us the desired result.

Now let (A,B,f,g,9,),y) be a splitting of A,. First, we can define a strong
transformation

}\:‘Z(L_)Y) HB(F_)B)
by Ax(f)=f:A —B. We now need to show that it is colimiting, i.e.,
A*:B(B,C) — Bicat(d,;,Cat;) (#2(1—,Y),B(F—,C))

defines an equivalence of categories for each object C in B. Let k:#;(1—Y)—
B(F—,C) be another strong transformation which is determined by kx(f):A — C.
We can now form the morphism kx(f)®,g:B— C with which we can form the
strong transformation (kx(f)®,g).A. We now have

Kx () ®p gAX (f) = kx (f) ®p gf = kx (f) @pp = kx(f)

which implies (kx(f)®pg).A=k and thus A* is essentially surjective. Now let h,h’:
B — C be 1-morphisms in B. We now want to show that A* induces an ismorphism

B(B>C)(h>h,) %Bicat(*bcatic)(QZ(L_>Y))B(F_)C))(h*A)hik)\)-

Let I':h,A—h/A be a strong transformation. We can define a morphism 6:h—h’
via

h 0 h/

ol

hf®,g = Wfw,g

and we have 9, A= since

Iy =0f

h Wt
hf@,gf =4 Wiw, gf

and thus A* is full. Lastly we want to show that it is faithful. Let 6,0':h—h’ be
2-morphisms such that 0,A=0/A. We now have
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and thus A* is faithful. All put together, we have shown that A* defines an equiva-
lence of categories and therefore defines a weighted colmit of F along #;(1—,Y). [

Corollary 4.2. Any two splittings of the same 2-idempotent in a locally 1dem-
potent complete bicategory are equivalent.

Corollary 4.3. &;(1—,Y):&; — Cat;. s an absolute weight.

Corollary 4.4. Let B be a bicategory. The bicategories Cat;, Cat;® and
Psh;.(B) are 2-idempotent complete.

Proof. We have already seen that Cat;., Cat;® and Psh;.(B) are all locally idem-
potent complete. Since Cati and Psh; (B) are cocomplete and splittings of a
2-idempotents are given by a weighted colimit, they are also 2-idempotent com-
plete.

One can show, that the data of a 2-idempotent in Cat;" is the same data as that
of a 2-idempotent in Cat;. and furthermore a splitting of this idempotent in Cat;”
defines a splitting of it in Cat;, and vice versa. This implies that Cat:® is also
2-idempotent complete. [

4.2 Cauchy Completion of a Bicategory

Finally, we can define the bicategorical analogue of Cauchy completion.

Definition 4.5. (Cauchy completion) We call an object A in a locally idempotent
complete bicategory B tiny if the pseudofunctor B(A,—):B— Cat;. is cocontinu-
ous, i.e., preserves all weighted colimits.

Let B be a locally idempotent complete bicategory. The Cauchy completion
of B is defined to be the full subbicategory of tiny objects in Psh; (B), i.e., an
object in this bicategory is a pseudofunctor S:B— Cat;> such that Psh; (B)(S,—):

1c

Psh; (B) — Cat;. is cocontinuous. We will denote this bicategory as Pshﬁf(IB%).

We first will show that Psh{®(B) is a completion of B in the sense that B embeds
into Psh!*(B) and is equivalent to it if B was already complete under absolute
weighted colimits. To do this we will prove the following propositions.

Proposition 4.6. Representable presheaves are tiny.
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4 Cauchy Completion

Proof. Let A be an object in B, we will now show that B(—,A) is tiny. Let F:
J— Psh;.(B) be a pseudofunctor and W:J — Cat;® a weight with colimit colimyF,
i.e., we have a strong transformation equivalence

A*:Psh; (B)(colimy F,—) — Bicat(J,Cat.® ) (W, Psh;. (B)(F,—))
given by precomposing with a colimiting strong transformation
A:W — Psh; (B)(F—,colimy, F).

We will now see that Psh; (B)(B(—,A),—) preserves this colimit. Applying this
functor to A yields a strong transformation

PShic (B) (B(_aA)>7\) W
- Catic(PShic (B) (B(_)A))F_))PShic (B) (B(_)A)>COIImWF) ) .

We will now check that

PShic(B) (B(_)A)>}\)* : Catic (PShm(B) (B(_>A))C0thF)>_)
— Bicat(J,Cat?Cp) (Wcatic(PShiC(B) (B(_»A)>F_))_))

defines an equivalence of pseudofunctors. Via the Yoneda lemma, the strong trans-
formation Psh; (B)(B(—,A),A) corresponds to the strong transformation Ay : W —
Cat; (F(—)(A),colimyF(A)). Since weighted colimits in Psh; (B) are computed
point-wise, we know that Ax has to define a weighted colimit which implies that
Psh; (B)(B(—,A),A) already had to have been colimiting. Thus the pseudofunctor
Psh; (B)(B(—,A),—) preserves colimits and B(A,—) is tiny. O

Proposition 4.7. Let B be a locally idempotent complete bicategory. Every
tiny presheaf S:B— Cat;’ is a retract of a representable presheaf.

Proof. We can express S as the weighted colimit of Jy:B— Psh; (B) along the
weight S:B— Cat.® with a strong transformation A:S— Psh;.(B)( Xp—,S) given
by the Yoneda lemma. Since S is tiny we can now apply the functor Psh;. (B)(S,—)
to this colimit and we have colimiting strong transformation

PShic (B) (S>}\) :S— Catic(PShic(B)(S) J:]B_)>P)Shic (B) (S>S))

for the weighted colimit of Psh; (B)(S, &z—):B— Cat,. along S:B— Cat;’. Since
this is now a weighted colimit in Cat;. we can explicitely define another colimit
using theorem We get a colimiting strong transformation
k:S— Cat(Psh;.(B)(S, z—),colimsPsh;. (B)(S, kz—))
Ka(a):Psh; (B)(S,B(—,A)) —colimsPsh; (B)(S, z—)

Ka(a)(a) =(a,a)
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4 Cauchy Completion

for the colimit in Cat. Using theorem [2.49, we can now form the colimit in Cat;.
by taking the idempotent completion. Let C be the idempotent completion of
colimgPsh; (B)(S, & p—) with embedding t:colimsPsh; (B)(S, Xz—) —C. We now
have a colimit strong transformation

K:S —)C&tic(PShic (B) (S, J:B—),C)

given by K=t.k. Since C and Psh; (B)(S,S) are now both weighted colimits of
Psh; (B)(S, kp—) along the weight S, we have an equivalence of categories ®:C —
Psh; (B)(S,S) such that ®,k=Psh; (B)(S,A). @ is defined by the following. Let
(a,) with a in S(A) and «:S—B(—,A) be an object in colimsPsh; (B)(S, kg—).
We now have

Dia,x)=Aa(a)x:S—S.

This defines @ up to isomoprhism since by corollary for any category D
and idempotent complete category &, precomposition with 1p:D—D defines an
equivalence

L5 :Cat(D,E) — Cat(D,E).
® now has the desired property since
(@.K)ala)(x)=Dira(a)(x) =Dt(a,x) =Ax(a)x=Pshi(B)(S,A)a(a)(x).

We know that ® has to be an equivalence, so there exists an object C in C such that
®C=ids via an isomorphism v:®C —ids. Since C lives in the idempotent comple-
tion of colimsPsh; (B)(S, kp—), we know due to remark that there exists an
object (a,) and an idempotent p:(a,a) — (a,«) in colimsPsh; (B)(S, &p—) and
morphisms ¢:(a,«) — C and : C— t(a, o) in C such that U =idc and P = tp).
We now have

©=vD(¢):A(a)x—idg and
Y=0(h)y ":ids =M (a)a

such that @1 =idig,. Therefore S is a 2-idempotent splitting of the 2-idempotent
aAp(a):B(—,A)—=B(—,A). O

Proposition 4.8. For every locally idempotent bicategory B, the Yoneda em-
bedding Xy:B—Pshi (B) takes values in Pshi*(B) and thus defines a fully
faithful pseudofunctor Xp:B— Pshi™(B). If B is furthermore complete under
absolute werghted colimaits, this pseudofunctor is an equivalence.

Proof. Let A be an object in B. It follows from proposition that Xp(A)=
B(—,A) is tiny. Thus &p:B— Pshi®(B) defines a fully faithful pseudofunctor.
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4 Cauchy Completion

Now assume B is complete under absolute weighted colimits. Let S be an object
in Pshi*(B). By proposition , S is a 2-idempotent splitting of a 2-idempotent
p:B(—,A)—=B(—,A). Since ky:B—Pshi*(B) is fully faithful, there exists a 2-
idempotent p: A — A in B such that &y(p)=p. Since we assumed B to be complete
under absolute weighted colimits, there exists a splitting of p given by an object
B and we thus have JX3(B)~S by corollary and therefore Jpy is an equivalence
of bicategories. O

Next we will check that the Cauchy completion of a category is complete under
absolute weighted colimits. For this we will prove the following lemma.

Lemma 4.9. A retract of a tiny object s tiny.

Proof. Let B be a retract of a tiny object A in a locally idempotent bicategory
B, i.e., we have 1-morphisms f:A—B and g:B— A and 2-morphisms ¢:fg—idg
and :idg —fg such that ¢ =idyq,. Let W:J— Cat;® be a weight and F:J—B
a pseudofunctor with colimiting strong transformation A:W—B(F—,C). We need
to show that

B(B,A):W — Cat; (B(B,F—),B(B,C))

defines a colimiting strong transformation. Let C be an idempotent complete
category and k:W — Cat; (B(B,F—),C) a strong transformation. We can now form
the diagram

9%

N T P .

—_—

B(A,C) _ - B(B,C)

where j is an object in J, a an object in Wi and g} is given by g;(h)=h®,g.
This diagram now commutes up to isomorphism.
We can now define a strong transformation

K:W — Cat; (B(A,F—),C)

Kj(a)=x;(a)gy
for objects j in J and a in Wi. Since A is a tiny object, we know that B(A,A):W —
Cat; (B(A,F—),B(A,C)) defines a colimiting strong transformation and therefore

we have a functor ¢:B(A,C)—C such that @.B(A,A) =K. We now define ¢ = @f*:
B(B,C) —C and we have

PAj(a),=of Aj(a).=@Aj(a).f =kj(a)f”
=kj(a)gef =xj(a)(fe,g) =k;(a)ids=«;(a)
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4 Cauchy Completion

and thus ¢.B(B,A)=«k. This now shows that B(B,A) is colimiting and thus B is
tiny ]

Proposition 4.10. Let B be a locally idempotent complete bicategory. Its
Cauchy completion Pshi®(B) is complete under absolute colimits.

Proof. Let W:J— Cat® be an absolute weight, and F:J— Psh{"*(B) a pseudo-
functor. This colimit will exist in Psh; (B) since it is cocomplete. Let A:W —
Psh;.(B)(F—,S) be a colimiting strong transformation. We will now show S is in-
deed a tiny presheaf, i.e., the colimit exists in Pshi®*(B). Applying Psh; (B)(S,—)
yields a colimiting strong transformation

PShm(B)(S))\) :Wﬁcatic(PShic (B) (S>F_))PSh1c(B)(S)S))

Analogously to the proof of proposition [4.7], S is a retract of a tiny presheaf and
therefore, by lemma S is tiny and the weighted colimit of F along W exists in
Psh{*(B). O

Finally, we can now rigorously prove that the Karoubi completion of a locally
idempotent bicategory is equivalent to its Cauchy completion.

Theorem 4.11. Let B be a locally idempotent complete category. The peudo-
functor gwen by the composition

—~ F~ ~ ¥
B _—°, Psh, (B) —° Psh,(B)

defines an equivalence of bicategories I@:Psh}f(l@).

Proof. First, we want to show that the pseudofunctor takes values in tiny objects,
i.e., for every object A, in B, the presheaf I@(LB,AP):IB%%Cathp is tiny. Remark
3.9 states that A, is a splitting of the 2-idempotent p on Aiq,. By absoluteness of
splittings, we have that @(LB,AP) is a splitting of an idempotent on B(ts,Aiq )=
B(t,tsA). Since p is fully faithful, we have that B(ig,1zA)~B(—,A). This means
that @(LB,AP) is a retract of a representable presheaf and by lemma , it therefore
is tiny.

Next, we will show that the pseudofunctor is fully faithful. Since the Yoneda
embedding is fully faithful and by theorem with C=Cat;’, precomposition

ic )

with 1 is fully faithful, their composition must also be fully faithful.

Lastly, we check that the pseudofunctor is essentially surjective. Let S be a tiny
idempotent complete presheaf on B. By proposition there exists an object A
in B and a 2-idempotent p on A such that S is a splitting of the 2-idempotent
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4 Cauchy Completion

p* on B(—,A). Remark states that A, is a splitting of the 2-idempotent p on
Aid, =pA. By absoluteness of splittings @(LB,AP) is a splitting of the idempotent
p* on B(is,3A)~B(—,A). Since splittings of 2-idempotents are unique up to
equivalence, it follows that S:]E(L]B,Ap). ]

We can now also see that 2-idempotent completeness and completeness under
absolute weighted colimits are the same concept in a locally idempotent bicategory.

Corollary 4.12. A locally idempotent bicategory is idempotent complete if
and only if it 1s complete under absolute weighted colimats.

Proof. Let B be an idempotent complete bicategory. By proposition [3.7] and
theorem [4.11, we now have B~B~Psh!®*(B). Since Psh'®(B) is complete under
absolute colimits, B must also be. The opposite direction follows analogously by
proposition 4.8 O

Finally we can show that the Cauchy completion is universal among all completions
under absolute weighted colimits in the sense that every pseudofunctor F:B—C
from a locally idempotent complete bicategory into a locally idempotent com-
plete bicategory complete under absolute weighted colimits, i.e., an idempotent
complete bicategory, factors through the Yoneda embedding J:B— Psh!*(B).

Corollary 4.13. For every locally 1dempotent bicategory B and idempotent
complete bicategory C, there is an equivalence

Bicat(Psh!*(B),C) ~ Bicat(B,C)
given by precomposing with Xg.

Proof. Theorems [4.11|and give us equivalences

(1 F~)* ~ fh
Bicat(Psh'*(B),C) — > Bicat(B,C) —— Bicat(B,C)

Composing them we get (15 &5)" = (13 &gts)*. For an object A in B, we have
g KA =B(p,A)~B(—,A)= XA and therefore 1y(1; &g)" ~ Lp O
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