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Introduction

Introduction

The concept of idempotent completeness and idempotent completion has existed

in some form or another at least since the early 1970s. Idempotents themselves

have been studied for far longer than that of course, for example in the form of

projections in linear algebra or idempotent elements in ring theory. One reason

for the interest in idempotents is that they often appear in many of the most

fundamental constructions, one example being direct sums.

A lot of the time, we are interested in whether a given idempotent is split, ap-

proximately meaning whether it can be written in terms of a subobject on which

it acts as the identity and onto which everything else gets projected, as is the case

for projections in linear algebra. A category in which every idempotent splits gets

to be called idempotent complete. In cases where a given idempotent does not

necessarily split, we are limited in the constructions we can perform. So it is of

no surprise that mathematicians have sought to �nd ways to alter categories by

adding objects and morphisms such that any given idempotent splits in this bigger

category, while only adding a minimal amount of new objects and morphisms. It

further is of no surprise that this construction which explicitly seeks to split idem-

potents was �rst described not in an abstract category theory paper but by Max

Karoubi in theorem 6.10 of his introduction to K-theory [Kar78]. This construc-

tion, called idempotent completion, also carries the name Karoubi completion in

honour of his work.

Another development in the early 1970s was an interest in so-called absolute col-

imits, colimits which are preserved by every functor. This was done in the context

of V-enriched categories, i.e., categories where each Hom-set carries the structure

of an object in V for an appropriate category V. In the case of Ab-enriched cat-

egories, �nite direct sums are preserved by every Ab-enriched functor. So once

again, these absolute colimits classify some fundamental constructions and math-

ematicians are interested in adding these colimits to a category whenever they

don't exist automatically. One way of doing this was described by F. William

Lawvere in [Law73] in the context of V-enriched categories. He calls this construc-

tion Cauchy completion since, among many other things, it generalises the notion

of the Cauchy completion of a metric space. Furthermore, he already notes what

we will see later in this thesis, namely, that an ordinary Set-enriched category is

Cauchy complete if and only if every idempotent in it splits. This relationship

between idempotents and absolute colimits has been studied further in the 1970s

and 1980s as described in the survey article [BD86].

Although the notion of higher categories in the form of bicategories has existed

since the 1960s, there seemingly was no interest in studying higher categorical ana-
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logues of idempotents and idempotent splittings until relatively recently, sparked

by applications. When before one was interested in constructions such as di-

rect sums in the category of k-vector spaces, mathematicians are now interested

in direct sums in higher categorical analogues of the category of vector spaces.

These types of higher categories have risen to prominence since they supply the

algebraic data needed to de�ne extended topological quantum �eld theories and

similar constructions. Two papers which, motivated by these applications, have

begun to sketch de�nitions of higher idempotents and higher idempotent comple-

tions are [DR18] by Christopher J. Douglas and David J. Reutter and [GJF19]

by Davide Gaiotto and Theo Johnson-Freyd. The latter tackles the problem in a

more general setting.

In the �rst section of this thesis, we will revisit 1-categorical Karoubi and Cauchy

completion in such a way that it makes the higher categorical generalisation seem

most apparent. The following four theorems are the main results of this section

and can be readily found in the literature.

Theorem 1 (see propositions 1.9, 1.10 and corollary 1.13). The Karoubi com-

pletion of a category is its idempotent completion.

By this, we mean that it is a completion under splitting idempotents and it is

in some sense minimal among all such possible completions. We also prove the

following statement about Karoubi completion, which is also well known but less

documented.

Theorem 2 (see theorem 1.12). Karoubi completion de�nes a left adjoint 2-

functor (̂−) :Cat→Catic from the 2-category of categories into the 2-category

of idempotent complete categories.

This will be of much use later in the thesis. For the Cauchy completion of a

category, we get the following analogous statement.

Theorem 3 (see propositions 1.23, 1.26 and corollary 1.29). The Cauchy com-

pletion of a category is its completion under absolute colimits.

This leads us to the following statement about idempotent completeness and com-

pleteness under absolute colimits.

Theorem 4 (see corollary 1.28). A category is idempotent complete if and only

if it is complete under absolute colimits.

This is a consequence of theorem 1.27 which tells us that the Karoubi completion

and the Cauchy completion of a given category are equivalent.

In the second section of this thesis, we will lay down the necessary bicategorical

prerequisites for this thesis and prove the following statement along the way.
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Construction 5 (see construction 2.44 and theorem 2.45). One can explicitly

construct weighted colimits in the 2-category Cat.

A weighted colimit is a bicategorical version of a colimit in an ordinary category.

This construction is analogous to that of colimits in the category Set, but has not

been done anywhere this explicitly.

In the third section, we will introduce the de�nitions of 2-idempotents and their

splittings and of the Karoubi completion of a locally idempotent complete bicat-

egory following [GJF19], locally idempotent complete meaning that every Hom-

category is idempotent complete. We will then show the following bicategorical

analogue of theorem 1.

Theorem 6 (see propositions 3.7, 3.8 and theorem 3.10). The Karoubi comple-

tion of a locally idempotent bicategory is its idempotent completion.

In the last section of this thesis, we go on to de�ne the Cauchy completion of

a bicategory analogously to its 1-categorical counterpart and get the following

statement as a bicategorical counterpart to theorem 3.

Theorem 7 (see propositions 4.8, 4.10 and corollary 4.13). The Cauchy com-

pletion of a locally idempotent bicategory is its completion under absolute

weighted colimits.

Finally, we have the following bicategorical analogue of theorem 4.

Theorem 8 (see corollary 4.12). A locally idempotent complete bicategory is

idempotent complete if and only if it is complete under absolute weighted

colimits.

This is a consequence of theorem 4.11, which tells us that the Karoubi completion

and the Cauchy completion of a given locally idempotent bicategory are equivalent.

So far, the proof of this theorem has only been sketched in [GJF19].

We require the reader of this thesis to be familiar with ordinary category theory.

To avoid set-theoretic issues, we assume that all our categories and colimits are

small for an appropriate Grothendieck universe.
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1 The 1-Categorical Case

1 The 1-Categorical Case

1.1 Idempotents and their Splittings

Definition 1.1. (Idempotent) An idempotent in a category C consists of an en-

domorphism p :A→A on some object A in C with the property that p2=p.

Example 1.2. In linear algebra these morphisms are often called projections since

a linear idempotent p :V→V projects each element of V into the subspace im(p)

and acts as the identity on im(p). This can be expressed by the fact that the

corestriction p|im(p) :V→ im(p) and the inclusion ι : im(p)→V satisfy p|im(p)◦ι=
idim(p). They also satisfy ι◦p|im(p)=p.

Definition 1.3. (Split Idempotent) In general, whenever we have an idempotent

p :A→A in a given category C for which we have a second object B and morphisms

f :A→B and g :B→A such that f◦g= idB and g◦f=p, we say that the idempotent

p splits. We say that B is a splitting of p and B is a retract of A.

Definition 1.4. (Idempotent Complete Category) When, for a given category C,
every idempotent in C splits, we call C idempotent complete.

A splitting of an idempotent can also be given by a colimit.

Proposition 1.5. Let C be a category, A an object in C, and p :A→A an

idempotent. The coequaliser of

A A
idA

p

de�nes a splitting of p. Furthermore every splitting of p de�nes such a

coequaliser.

Proof. A colimit of the above diagram consists of an object B and a morphism

f :A→B such that f◦p=f◦idA=f which satis�es the universal property of the

colimit. Since p :A→A also has the property that p◦p=p◦idA, there exists a

morphism g :B→A such that g◦f=p. Furthermore we have f◦g◦f=f◦p=f=
idB◦f and since f is colimiting, f◦g= idB. Thus the coequaliser de�nes a splitting

of p.

Now let B be an object with morphism f :A→B and g :B→A such that f◦g= idB
and g◦f=p and let C be another object with a morphism h :A→C such that

h◦p=h. We have a morphism h◦g :B→C which satis�es h◦g◦f=h◦p=h. Now
let k :B→C be another morphism such that k◦f=h, we then have h◦g=k◦f◦g=
k◦idB=k. Thus f :A→B de�nes a coequliser of idA and p.
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1 The 1-Categorical Case

Corollary 1.6. A splitting of an idempotent is unique up to unique isomor-

phism.

Definition 1.7. (Free Walking Idempotent) We de�ne ♣1 to be the category with

one object X and one non-identity morphism p :X→X which satis�es p2=p. We

call this category the free walking idempotent. It carries this name since the

data of an idempotent in a given category C is equivalent to that of a functor

F :♣1→C. Furthermore the coequaliser of proposition 1.5 can then be expressed

as the colimit of the corresponding functor.

We already note here that the category ♣1 is special. A splitting of an idempotent

is de�ned purely equationally. Since functors preserve equations, functors preserve

splittings, i.e., if an idempotent p :A→A splits via f :A→B and g :B→A in C
and F :C→D is a functor, the idempotent Fp :FA→FA splits via Ff :FA→FB and

Fg :FB→FA in D. Since an idempotent splitting is de�ned by a colimit of a

functor out of ♣1, ♣1 has the property that every colimit of a functor out of it

gets preserved by every functor with appropriate domain.

We have just now already seen that the category Vectk of k-vector spaces and

linear maps is indeed idempotent complete. But very much not all categories are.

One example is the category Rel of sets and relations. The relation {(0,0),(0,1)}

on the set {0,1} de�nes an idempotent and one can show that this idempotent

does not split in Rel. In the following section we will see how we can construct an

idempotent complete category from a given category. This construction will turn

out to be minimal in the sense that it does not add more than is required.

1.2 Karoubi Completion

Definition 1.8. (Karoubi completion) Let C be a category. We de�ne the Karoubi

completion Ĉ to be the category with the following data.

� Objects in Ĉ are idempotents in C, i.e., an object in Ĉ consists of an object

A in C and a morphism p :A→A in C such that p2=p. We will denote this

object by Ap.

� A 1-morphism between Ap and Bq is given by a morphism f :A→B in C such

that f◦p=f and q◦f=f.

� Composition of morphisms in Ĉ is given by the composition in C.

� The identity morphism on Ap is given by p :Ap→Ap.

2



1 The 1-Categorical Case

The morphism in this category are also sometimes called bilodules since they are

in some sense decategori�ed bimodules and hence one letter away from bimodules.

The action of a ring on an abelian group is replaced by the action of an idempotent

on a morphism, this action being equality.

We �rst will show that Ĉ is a completion of C in the sense that C embeds into Ĉ
and is equivalent to it if C was already idempotent complete.

Proposition 1.9. For every category C, there exists a fully faithful functor

ιC :C→ Ĉ. If C is furthermore idempotent complete, i.e., every idempotent

splits in C, this functor is an equivalence.

Proof. We de�ne ιC to map an object A in C onto the object AidA in Ĉ and

a morphism f :A→B onto f :AidA →BidB . Since any morphism f :A→B has the

property that f◦idA=f and idB◦f=f, we see that ιC is fully faithful.

Now assume that C is idempotent complete and let Ap be an object in C. We know

that the idempotent p :A→A splits in C, which means there exists an object B in

C and morphisms f :A→B and g :B→A such that g◦f=p and f◦g= idB. These

de�ne morphisms f :Ap→BidB and g :BidB →Ap since f◦p=f◦g◦f= idB◦f=f and
p◦g=g◦f◦g=g◦idB=g.

We now have g◦f=p= idAp and f◦g= idB= idBidB . Thus it follows that Ap
∼=BidB

and ιC is an equivalence of categories.

For Ĉ to be the completion of C under splitting idempotents, we want Ĉ itself to

be idempotent complete, which we will show in the following.

Proposition 1.10. For any category C, the Karoubi completion Ĉ is idempo-

tent complete.

Proof. Let Ap be an object in Ĉ and e :Ap→Ap be an idempotent on Ap, i.e.,

e◦p=e, p◦e=e and e2=e. It therefore follows that Ae is an object in Ĉ and

we have the morphisms e :Ap→Ae and e :Ae→Ap. Composing these morphisms,

we see that e◦e=e :Ap→Ap and e◦e=e= idAe :Ae→Ae. Thus the idempotent

e :Ap→Ap splits.

Since an idempotent p :A→A in C de�nes an idempotent p :AidA →AidA in Ĉ, we
also get the following statement.

Remark 1.11. For an object Ap in Ĉ, Ap is a splitting of the idempotent p on

AidA.

Finally, we want to show that the Karoubi completion Ĉ is universal among all

possible idempotent completions of C, which is why we can call it the idempotent

3



1 The 1-Categorical Case

completion of C. By universal, we mean that for any functor F from C into an

arbitrary idempotent complete category D, there is a functor F′ : Ĉ→D such that

F′◦ιC ∼=F.

For this we will invoke the language of 2-categories, i.e., categories where each

Hom-set carries the structure of a category such that composition of morphisms

is functorial. A 2-functor between 2-categories is then a functor together with

functors for each Hom-category. Later in this thesis, we will properly introduce 2-

categories and their weakened variants, bicategories, but for now we will continue

since the reader needs only be familiar with the 2-category Cat of categories,

functors and natural transformations.

This universality will take the form of an adjunction (̂−)⊣U where (̂−) :Cat→
Catic is Karoubi completion and U :Catic→Cat is the forgetful functor which

forgets, that an idempotent complete category is idempotent complete, where we

de�ne Catic to be the full subcategory of idempotent complete categories of the

2-category Cat.

Theorem 1.12. The Karoubi completion de�nes a 2-functor (̂−) :Cat→Catic
which is left adjoint to the forgetful 2-functor U :Catic→Cat.

Proof. The 2-functor (̂−) maps a category C to the category Ĉ. A functor F :C→
D is mapped onto the functor F̂ : Ĉ→D̂ which maps an idempotent Ap onto the

idempotent FAFp and a morphism f :Ap→Bq onto the morphism Ff :FAFp→FBFq.

The functoriality of F̂ follows directly from the functoriality of F. Lastly, a natural

transformationφ :F→G is mapped onto the natural transformation φ̂ : F̂→Ĝ which

has components φ̂Ap =G(p)◦φA=φA◦F(p) :FAFp→GAGp. The components are

morphisms in D̂ since

φ̂Ap ◦F(p)=φA◦F(p)◦F(p)=φA◦F(p2)=φA◦F(p)=φ̂Ap and

G(p)◦φ̂Ap =G(p)◦G(p)◦φA=G(p2)◦φA=G(p)◦φA=φ̂Ap .

For φ̂ to be natural, we need that the square

FAFp FBFq

GAGp GBGq

Ff

φ̂Ap φ̂Bq

Gf

commutes for all morphisms f :Ap→Bq. This follows since the diagram

4



1 The 1-Categorical Case

FA FA FB FB

GA GA GB G(B)

Fp

φA

φ̂Ap

Ff

φA

Ff

φB

Fq

φ̂Bq
φB

Gp Gf

Gf

Gq

commutes. We now need to check that (̂−) is functorial both on functors and nat-

ural transformations. Let C,D,E be categories and F,G,H :C→D, K :D→E func-

tors, and φ :F→G, ψ :G→H natural transformations. We have îdC = idĈ and also

K̂F= K̂F̂. For natural transformations we have (îdF)Ap =F(p)= idFAFp
=(id

F̂
)Ap and

ψ̂Apφ̂Ap =ψAG(p)G(p)φA=ψAG(p)φA=ψAφAF(p)=(ψφ)AF(p)=ψ̂φAp
.

Thus (̂−) de�nes a 2-functor.

To have an adjunction (̂−)⊢U , we now need natural transformations η : idCat→
U (̂−) and ϵ : (̂−)U → idCatic. These will have components ηC :C→ Ĉ and ϵD :D̂→D
for categories C and idempotent complete categories D.

Since we already de�ned functors ιC :C→ Ĉ, we de�ne η to have components ιC
and denote the natural transformation by ι. We can de�ne ϵ and its components

ϵD :D̂→D in the following way.

Let Ap be an object in D̂. Since D is idempotent complete, we have a splitting

(A,B,f,g) of p, i.e., an object B in D and morphisms f :A→B and g :B→A such

that g◦f=p and f◦g= idB. To de�ne ϵD, we need to choose a splitting for each

idempotent Ap and we choose these such that any identity idempotent AidA splits

via (A,A,idA,idA). We now map the idempotent Ap onto B. A morphism h

between objects Ap and A′
p′ that have splittings (A,B,f,g) and (A′,B′,f′,g′) is

mapped onto the morphism f′◦h◦g :B→B′.

This assignment is functorial. Let Ap, A
′
p′ and A′′

p′′ be objects in D̂ that have

splittings (A,B,f,g), (A′,B′,f′,g′) and (A′′,B′′,f′′,g′′) and let h :Ap→A′
p′ and h′ :

A′
p′ →A′′

p′′. be morphisms in D̂. We now have

ϵD(idAp)=ϵD(p)=f◦p◦g=f◦g◦f◦g= idB◦idB= idB= idϵD(Ap) and

ϵD(h
′)◦ϵD(h)=f

′′◦h′◦g′◦f′◦h◦g=f′′◦h′◦p′◦h◦g=f′′◦h′◦h◦g=ϵD(h
′◦h).

ι de�nes a natural transformation since, for any functor F :C→C ′ and any object

A in C, we have

F̂ιC(A)= F̂(AidA)=F(A)F(idA)=F(A)idF(A)
= ιC′F(A).

ϵ is however only natural up to isomorphism since, for an object Ap in D̂ with a

splitting (A,B,f,g) and a functor F :D→D′, the splitting we choose for FAFp does

5



1 The 1-Categorical Case

not have to agree with (FA,FB,Ff,Fg). Still, these splittings must be uniquely

isomorphic since a splitting of an idempotent is given by a colimit.

Lastly, we need to check that the two triangle identities (ϵ◦(̂−))·((̂−)◦ι)= id
(̂−)

and (U ◦ϵ)·(ι◦U)= idU hold. By looking at their components, we see that these

identities translate to ϵĈιĈ = idĈ and ϵDιD = idD, which means we just have to

check that ϵDιD = idD holds for any idempotent complete category D. Since we

de�ned ϵD by choosing that an identity idempotent splits via the identity, this

holds automatically.

Corollary 1.13. For each category C and idempotent complete category D, we

have an equivalence of categories Cat(Ĉ,D)≃Cat(C,D) induced by precompos-

ing with ιC.

Proof. The adjunction (̂−)⊢U induces an equivalence Catic(Ĉ,D)≃Cat(C,U(D))

by mapping F : Ĉ→D onto U(F)ιC. Since U is a forgetful functor we have U(D)=

D and U(F)=F. The corollary now follows since Catic is a full subcategory of

Cat.

1.3 1-Categorical Excursion

We have already seen that a splitting of an idempotent is equivalent to the data

of a colimit which is preserved by every functor with appropriate domain. Before

we can further investigate these types of colimits, we must �rst re
ect on what it

means for a functor to preserve a colimit.

Lemma 1.14. Let F :J →C and G :C→D be functors and let λF :F→∆colimF be

a colimit cone for F where ∆− denotes the constant functor at the speci�ed

object. The following three notions of "G preserves colimF" are equivalent.

(i) G maps the colimit cone λF onto a colimit cone GλF :GF→∆GcolimF.

(ii) G maps the natural isomorphism given by precomposing with λF

(λF)∗ :C(colimF,−)→Cat(J ,C)(F,∆−)

onto a natural isomorphism

(GλF)∗ :D(GcolimF,−)→Cat(J ,D)(GF,∆−).

(iii) Let λGF :GF→∆colimGF be a colimit cone for GF. The canonical morphism

φ :colimGF→GcolimF, which is given by φ◦λGF=GλF, is an isomorphism.

6



1 The 1-Categorical Case

Proof. The statements (i) and (ii) are equivalent since λ :F→∆X is a colimit cone

for a given functor F :J →C i� λ∗ :C(X,−)→Cat(J ,C)(F,∆−) is a natural isomor-

phism.

Now, assume (ii) holds. Alongside the canonical morphism φ :colimGF→GcolimF,

we also get a canonical morphism ψ :GcolimF→colimGF de�ned by ψ◦GλF=λGF.
We now have φ◦ψ◦GλF=GλF and ψ◦φ◦λGF=λGF. Since these morphisms must

be unique, we have φ◦ψ= idGcolimF and ψ◦φ= idcolimGF and φ is an isomorphism.

Finally, assume (iii) holds. We have (GλF)∗=(φ◦λGF)∗=(λGF)∗◦φ∗. Since both

φ∗ :D(GcolimF,−)→D(colimGF,−) and

(λGF)∗ :D(colimGF,−)→Cat(J ,D)(GF,∆−)

are natural isomorphisms, (GλF)∗ is also a natural isomorphism.

We will come to �nd the third notion of preserving a colimit especially useful as

we can sometimes explicitly construct the morphism φ, which then immediately

has to be an isomorphism.

Definition 1.15. (Absolute Colimit) Let J , C be categories and F :J →C a func-

tor. A colimit of F is called an absolute colimit if for every category D and functor

G :C→D, it is preserved by G.

Example 1.16. The splitting of an idempotent de�nes an abolute colimit.

Definition 1.17. (Absolute Category) A category J is called an absolute category

if for every category C and functor F :J →C, the colimit of F is absolute if it exists.

Example 1.18. We have already seen that ♣1 de�nes an absolute category since

a colimit of a functor out of ♣1 is given by a splitting of an idempotent. Another,

yet trivial, example is the terminal category 1 with one object and no non-identity

morphisms.

Definition 1.19. (Completeness under Absolute Colimits) A category C is called

complete under absolute colimits if for every absolute category J and every

functor F :J →C the colimit of F exists.

This de�nition of completeness might exclude some absolute colimits but we will

see that even those absolute colimits that do not stem from absolute categories

can be expressed non-trivially via absolute categories.

1.4 Cauchy Completion

We will now de�ne the Cauchy completion of a category, which is the completion

under absolute colimits. It too is universal among all categories that have this

property.

7



1 The 1-Categorical Case

Definition 1.20. (Cauchy completion) We call an object A in a category C tiny

if the functor C(A,−):C→Set is cocontinuous, i.e., preserves all colimits.

Let C be a category. The Cauchy completion of C is de�ned to be the the full

subcategory of tiny objects in the category Psh(C) of presheaves on C, i.e., an
object in this category is a functor S :C→Setop such that Psh(C)(S,−):Psh(C)→
Set is cocontinuous. We will denote this category as Pshtn(C).

We �rst will show that Pshtn(C) is a completion of C in the sense that C embeds

into Pshtn(C) and is equivalent to it if C was already complete under absolute

colimits. Before we can do this, we will show the following propositions.

Proposition 1.21. Representable presheaves are tiny.

Proof. Let A be an object in a category C, we will now show that C(−,A) is

tiny. Let F :J →Psh(C) be a functor with colimit colimF, i.e., we have a natural

isomorphism

λ∗ :Psh(C)(colimF,−)→Cat(J ,Psh(C))(F,∆−)

given by precomposing with a colimit cone λ :F→∆colimF. We will now see that

Psh(C)(C(−,A),−) preserves this colimit. Applying this functor to λ yields a cone

Psh(C)(C(−,A),λ) :Psh(C)(C(−,A),F)→∆Psh(C)(C(−,A),colimF)

which is de�ned by component-wise postcomposition with λ. We will now check

that

Psh(C)(C(−,A),λ)∗ :Set(Psh(C)(C(−,A),colimF),−)→Cat(J ,Set)(Psh(C)(C(−,A),F),∆−)

de�nes a natural isomorphism. We know that it is natural therefore we only have to

check that its components are isomorphisms. This translates to the statement that,

for each set X and morphism φ :Psh(C)(C(−,A),F)→∆X, there exists a unique

morphism ψ :Psh(C)(C(−,A),colimF)→X such that the diagram

Psh(C)(C(−,A),F) ∆X

∆Psh(C)(C(−,A),colimF)

φ

Psh(C)(C(−,A),λ)
ψ

commutes. Using the Yoneda lemma, we can extend this diagram to the following.

8



1 The 1-Categorical Case

Psh(C)(C(−,A),F) F(−)(A) ∆X

∆Psh(C)(C(−,A),colimF) ∆colimF(A)

Psh(C)(C(−,A),λ)

φ

Y
∼=

(λ−)A

Y
∼=

ψ̃

Since colimits in Psh(C) are computed point-wise, (λ−)A de�nes a colimit cone for

the functor F(−)(A) :J →Set and we get a unique morphism ψ̃ :colimF(A)→X

such that ψ̃◦(λ−)A=φ◦Y−1. Now we just need to con�rm that the left square

commutes. For this, we check that it commutes evaluated at an arbitrary object

j in J .

Psh(C)(C(−,A),Fj) F(j)(A)

Psh(C)(C(−,A),colimF) colimF(A)

Y

(λj)∗ (λj)A

Y

Let α :C(−,A)→Fj be a natural transformation. We now have

(Y◦(λj)∗)(α)=Y(λj◦α)=(λj◦α)A(idA)=(λj)A(αA(idA))=((λj)A◦Y)(α)

and therefore the square commutes. We now set ψ=ψ̃◦Y. This satis�es

ψ◦Psh(C)(C(−,A),λ)=ψ̃◦Y◦Psh(C)(C(−,A),λ)=ψ̃◦(λ−)A◦Y=φ◦Y−1◦Y=φ

and is furthermore unique since ψ̃ was unique. Thus C(−,A) is tiny.

Proposition 1.22. Every tiny presheaf S on C is a retract of a representable

presheaf.

Proof. Let S be a tiny presheaf on C. The co-Yoneda Lemma, otherwise also

known as the density theorem, states that each presheaf is a colimit of representa-

bles. This means there exists a category J , a functor F :J →C and a colimit cone

λ :HCF→∆S.

Since S is tiny, applying Psh(C)(S,−) yields another colimit cone

Psh(C)(S,λ) :Psh(C)(S,HCF)→∆Psh(C)(S,S).

Since the functor Psh(C)(S,HCF) :J →Set takes values in Set, we can explicitly

construct a second colimit cone. We de�ne a relation on the set∐
j∈ObJ

Psh(C)(S,C(−,Fj))

9



1 The 1-Categorical Case

in the following way. For each α :S→C(−,Fj1) and β :S→C(−,Fj2), we set α∼β if

there exists a morphism f : j1→ j2 in J such that F(f)∗◦α=β. We now take the

equivalence relation generated by this relation and de�ne colimPsh(C)(S,HCF) to

be the set of equivalence classes under this relation. The cone

λ̃ :Psh(C)(S,HCF)→∆colimPsh(C)(S,HCF)

is now de�ned via λ̃j(α)=[α], i.e., for each j in J , λ̃j maps α :S→C(−,F(j)) onto
its equivalence class [α]. We now also have a unique map

φ :colimPsh(C)(S,HCF)→Psh(C)(S,S)

such that φ◦λ̃=Psh(C)(S,λ), which is de�ned via φ([α])=λj◦α.

We know that this map has to be an isomorphism, which implies that there exists a

j in J and an α :S→C(−,Fj) such that λj◦α= idS. Therefore α◦λj is an idempotent

on C(−,Fj), which splits via S.

Proposition 1.23. For every category C, the Yoneda embeddingHC :C→Psh(C)
takes values in Pshtn(C) and thus de�nes a fully faithful functor HC :C→
Pshtn(C). If C is furthermore complete under absolute colimits, this functor

is an equivalence.

Proof. LetA be an object in C. By proposition 1.21, we have thatHC(A)=C(−,A)
is tiny. Thus the Yoneda embedding takes values in tiny presheaves and we have

a fully faithful functor HC :C→Pshtn(C).

Now assume that C is complete under absolute colimits. Let S be a tiny presheaf

on C. By proposition 1.22, there is an object A in C and idempotent p :C(−,A)→
C(−,A) such that p splits via S. Since the Yoneda embedding is fully faithful,

there is a morphism p̃ :A→A such that p̃∗=p.

Since C is assumed to be complete under absolute colimits and a splitting of an

idempotent is a colimit of a functor out of an absolute category, there is an object B

in C such that p̃ splits via B. But now the idempotent p̃∗=p also splits via C(−,B)
and since colimits are unique up to isomorphism we have S ∼=C(−,B). Therefore

the functor HC :C→Pshtn(C) is essentially surjective and thus an equivalence of

categories.

We can now also see in what way a general absolute colimit is related to absolute

categories.

Lemma 1.24. Let J and C be categories, F :J →C a functor and let λ :F→∆A
de�ne an absolute colimit for some A in C. A is a retract of an object in the

image of F.

10



1 The 1-Categorical Case

Proof. If we apply the functor C(A,−):C→Set to the given colimit, we get a

colimiting cone C(A,λ) :C(A,F)→∆C(A,A). Since C(A,F) is now a functor into Set,

we have, analogously to the proof of proposition 1.22, that A is a retract of Fj

for some j in J . This means we have a functor F′ :♣1→C and a colimit cone

λ′ :F′→∆A.

We furthermore conjecture that the idempotent itself also lies in the image of F.

Next we will check that the Cauchy completion of a category is indeed complete

under absolute colimits, which we will do using the following lemma.

Lemma 1.25. A retract of a tiny object is tiny.

Proof. Let B be a retract of a tiny objectA in a category C, i.e., we have morphisms

f :A→B and g :B→A such that f◦g= idB. Let F :J →C be a functor with colimit

cone λ :F→∆C. We will need to show that C(B,λ) :C(B,F)→∆C(B,C) also de�nes a

colimit cone, which is equivalent to

C(B,λ)∗ :Set(C(B,C),−)→Cat(J ,Set)(C(B,F),∆−)

being a natural isomorphism. Since it is automatically natural, we will just need

to show that it is an isomorphism in every component. Let φ :C(B,F)→∆X be a

natural transformation, we need to show that there is a unique ψ :C(B,C)→X such

that the diagram

C(B,F) ∆X

∆C(B,C)

λ∗

φ

ψ

commutes. We can expand this diagram in the following way.

C(A,F) C(B,F) X

∆C(A,C) ∆C(B,C)

λ∗

g∗

φ

λ∗

f∗

g∗

ψ

f∗

Since A is tiny, we know that C(A,λ) :C(A,F)→∆C(A,C) is a colimiting cone. We can

now de�ne φ̃=φ◦g∗ and thus have a unique ψ̃ :C(A,C)→X such that ψ̃◦λ∗=φ̃.

We now set ψ=ψ̃◦f∗ and have

ψ◦λ∗=ψ̃◦f∗◦λ∗=ψ̃◦λ∗◦f∗=φ̃◦f∗=φ◦g∗◦f∗=φ◦(f◦g)∗=φ.

ψ is furthermore uniquely determined, since ψ̃ was uniquely determined. Thus

C(B,λ) de�nes a colimit cone and B is a tiny object.

11
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Proposition 1.26. For any category C, its Cauchy completion Pshtn(C) is

complete under absolute colimits.

Proof. Let J be an absolute category and F :J →Pshtn(C) a functor. A priori,

the colimit of F does not need to exist in Pshtn(C) but since Psh(C) is cocomplete,

it will exist in Psh(C). Let λ :F→∆S be a colimit cone for some S in Psh(C). By
lemma 1.24, S is a retract of a tiny presheaf and thus, by lemma 1.25, S is a tiny

presheaf, proving that Pshtn(C) is complete under absolute colimits.

We would now like to show that Cauchy completion is also universal among all

completions under absolute colimits. We will prove this by showing that the

Cauchy completion and the Karoubi completion are equivalent constructions, i.e.,

they give equivalent categories.

Theorem 1.27. Let C be a category. The functor given by the composition

Ĉ Psh(Ĉ) Psh(C)
H

Ĉ ι∗C

de�nes an equivalence of categories Ĉ ≃Pshtn(C).

Proof. First, we want to show that the functor takes values in tiny objects, i.e., for

every object Ap in Ĉ, the presheaf Ĉ(ιC,Ap) :C→Setop is tiny. By remark 1.11, Ap
is a splitting of the idempotent p on AidA . By absoluteness of splittings, we have

that Ĉ(ιC,Ap) is a retract of Ĉ(ιC,AidA)= Ĉ(ιC,ιCA). Since ιC is fully faithful, we

have Ĉ(ιC,ιCA) ∼=C(−,A). This means that Ĉ(ιC,Ap) is a retract of a representable
presheaf and by lemma 1.25, it therefore has to be tiny.

Next, we will show that the functor is fully faithful. Since the Yoneda embedding

is fully faithful and by corollary 1.13 with D=Setop, precomposition with ιC is

fully faithful, their composition must also be fully faithful.

Lastly, we need that the functor is essentially surjective. Let S be a tiny presheaf

on C. By proposition 1.22, there exists an object A in C and an idempotent p

on A such that S is a splitting of the idempotent p∗ on C(−,A). By remark 1.11,

Ap is a splitting of the idempotent p on AidA = ιCA. By absoluteness of splittings,

Ĉ(ιC,Ap) is a splitting of the idempotent p∗ on Ĉ(ιC,ιCA) ∼=C(−,A). Since splittings
of idempotents are unique up to isomorphisms, it follows that S ∼= Ĉ(ιC,Ap).

It now follows that the notions of idempotent completeness and completeness

under absolute colimits are equivalent.

Corollary 1.28. A category is idempotent complete i� it is complete under

absolute colimits.

12
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Proof. Let C be an idempotent complete category. By proposition 1.9 and the-

orem 1.27, we now have C ≃Ĉ ≃Pshtn(C). Since Pshtn(C) is complete under ab-

solute colimits, C also must be. The opposite direction follows analogously with

proposition 1.23.

Finally we can show that the Cauchy completion is universal among all completions

under absolute colimits in the sense that every functor F :C→D from an arbitrary

category into a category complete under absolute colimits, i.e., an idempotent

complete category, factors through the Yoneda embedding HC :C→Pshtn(C).

Corollary 1.29. For every category C and idempotent complete category D
there is an equivalence

Cat(Pshtn(C),D)≃Cat(C,D)

given by precomposing with HC.

Proof. Corollary 1.13 and theorem 1.27 give us equivalences

Cat(Pshtn(C),D) Cat(Ĉ,D) Cat(C,D).
(ι∗CHĈ

)∗
ι∗C

Composing them we get ι∗C(ι
∗
CHĈ)

∗=(ι∗CHĈιC)
∗. For an object A in C, we get

ι∗CHĈιCA= Ĉ(ιC,ιCA) ∼=C(−,A)=HCA and therefore ι∗C(ι
∗
CHĈ)

∗ ∼=H
∗
C.
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2 Bicategorical Prerequisites

2 Bicategorical Prerequisites

We will now lay down the prerequisites in bicategory theory required for the rest

of this thesis and retroactively supplying the de�nitions needed to make theorem

1.12 rigorous. We try to stick to the terminology used in [JY21].

2.1 Bicategorical Fundamentals

This �rst section roughly follows chapters 2 and 4 of [JY21] which gives an exten-

sive introduction to the theory of bicategories. To begin, we will give the de�nition

of a bicategory.

Definition 2.1. (Bicategory) A bicategory B consists of the following data.

� A collection of objects ObB. We will often times abbreviate A∈ObB as

A∈B for an object A in B.

� For each pair of objects A,B∈B, a category B(A,B) called a Hom-category.

Objects in B(A,B) are called 1-morphisms and morphisms between 1-mor-

phisms are called 2-morphisms. Composition of 2-morphisms is called ver-

tical composition.

� For each object A∈B, a 1-morphism idA∈B(A,A), called the identity on A.

� For each triple of objects A,B,C∈B, a functor

cABC :B(B,C)×B(A,B)→B(A,C),

called the horizontal composition. For 1-morphisms f,f′ ∈B(A,B), g,g′ ∈
B(B,C) and 2-morphisms α :f→f′ and β :g→g′ we write

cABC(g,f)=g◦f∈B(A,C),
cABC(β,α)=β◦α :g◦f→g′◦f′.

When it is clear from context, we will sometimes notate horizontal compo-

sition by concatenation and leave out the symbol for composition.

� For each collection of objects A,B,C,D∈B, a natural isomorphism

aABCD :cABD(cABC×idB(A,B))→cACD(idB(C,D)×cABC),

called the associator, between functors

B(C,D)×B(B,C)×B(A,B)→B(A,D).

14
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� For each pair of object A,B∈B a natural isomorphism

lAB :cABB(idB,−)→ idB(A,B),

called the left unitor.

� For each pair of object A,B∈B a natural isomorphism

rAB :cAAB(−,idA)→ idB(A,B),

called the right unitor.

The subscripts in c will often be omitted. The subscripts in a, l and r will often

be used to denote their component morphisms. This data needs to satisfy the

two following axioms for all 1-morphisms f∈B(A,B), g∈B(B,C), h∈B(C,D) and

k∈B(D,E).

Triangle Axiom: The diagram

(g◦idB)◦f g◦(idB◦f)

g◦f

a

rg◦idf
idg◦lf

in B(A,C) commutes.

Pentagon Axiom: The diagram

(k◦h)◦(g◦f)

((k◦h)◦g)◦f k◦(h◦(g◦f))

(k◦(h◦g))◦f k◦((h◦g)◦f)

ak,h,g◦fak◦h,g,f

ak,h,g◦idf
ak,h◦g,f

idk◦ah,g,f

in B(A,E) commutes.

This �nishes the de�nition of a bicategory.

A special class of bicategories which are simpler to handle are the following.

Definition 2.2. (2-Category) A 2-category is a bicategory B in which the asso-

ciator and the left and right unitor are all identity natural transformations.
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Since 2-categories lack some of the complexity of general bicategories, they are

easier to work with and one might expect this to limit their usefulness to only

few cases. But in fact we will later see that every bicategory is equivalent to a

2-category.

Within a given bicategory the notion of two objects being isomorphic is often

times too strong. Thus we de�ne the following.

Definition 2.3. (Equivalence) Let B be a bicategory, we call two objects A,B in

B equivalent if there exist 1-morphisms f :A→B and g :B→A such that g◦f ∼= idA
and f◦g ∼= idB. We will denote this as A≃B and call such 1-morphisms equiva-

lences.

We often times will construct a bicategory from a given one by removing some of

its objects. This can be made rigorous by the following.

Definition 2.4. (Subbicategory) Let B and B′ be bicategories. B′ is a subbicate-

gory of B if the following statements hold.

� The collection ObB′ is contained within ObB.

� For objects A,B∈B′, B′(A,B) is a subcategory of B(A,B).

� The identity on A in B′ is equal to the identity of A in B.

� For objects A,B,C in B, the horizontal composition c′
ABC in B′ makes the

diagram

B′(B,C)×B′(A,B) B′(A,C)

B(B,C)×B(A,B) B(A,C)

c′
ABC

cABC

commute, where the unlabeled arrows are subcategory inclusions.

� Every component of the associator in B′ is equal to the corresponding com-

ponent of the associator in B and analogously for the left and right unitors.

Furthermore B′ is a full subbicategory of B if for objects A,B∈B′, B′(A,B) equals

B(A,B).

We are now going to list some examples of bicategories and ways to construct

bicategories.
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Example 2.5. (Cat) The archetypal bicategory is the 2-category Cat of cate-

gories, functors and natural transformations.

� ObCat is given by the collection of all categories.

� For each pair of categories C,D∈Cat, the collection of functors Cat(C,D)

from C into D form a category with natural transformations as morphisms.

� For each category C ∈Cat, there exists an identity functor idC ∈Cat(C,C).

� For each triple of categories C,D,E ∈Cat, composition of functors forms a

functor

cCDE :Cat(D,E)×Cat(C,D)→Cat(C,E).

� Since composition of functors is strictly associative and strictly unital, the

associator and the left and right unitors are given by identity natural trans-

formations. The triangle axiom and pentagon axiom therefore also immedi-

ately hold.

Remark 2.6. Equivalence in the bicategory Cat turns out to be the usual notion

of equivalence of categories.

Example 2.7. (Opposite Bicategory) Let B be a bicategory with horizontal com-

position c, associator a, and left and right unitors l and r. We can de�ne the

bicategory Bop in the following way.

� Bop has the same objects as B.

� Let A,B be objects in Bop. The hom category Bop(A,B) is given by B(B,A).

� Let A,B,C be a triple of objects in Bop. The functor

copABC :Bop(B,C)×Bop(A,B)→Bop(A,C)

is de�ned by

copABC(g,f)=cCBA(f,g)=f◦g,
copABC(β,α)=cCBA(α,β)=α◦β :f◦g→f′◦g′

for 1-morphisms f,f′ ∈Bop(A,B)=B(B,A), g,g′ ∈Bop(B,C)=B(C,B) and 2-

morphisms α :f→f′ and β :g→g′. Functorality of cop follows from that of

c.

� aop is given by a−1, lop=r and rop= l. The triangle and pentagon axiom for

Bop immediately follow from those in B.
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Example 2.8. (Monoidal Categories) Let C, be a monoidal category with monoidal

product ⊗ and monoidal unit 1. C can be thought of as a bicategory C in the

following way.

� C has one object which we will call X.

� The one and only Hom-category is given by C(X,X)=C.

� The identity 1-morphism on X is given by 1.

� Horizontal composition is given by the monoidal product

⊗ :C×C→C.

� The associator and left and right unitors are given by the associator and the

left and right unitors of the monoidal category. The triangle and pentagon

axiom for monoidal categories then immediately translate to the triangle and

pentagon axiom of bicategories.

Example 2.9. (Bimod) We can de�ne the category Bimod in the following way.

� The objects of Bimod are given by associative, unital rings.

� For each pair of rings R,S∈Bimod, the Hom-category Bimod(R,S) is given

by the category of (R,S)-bimodules and bimodule morphisms.

� The identity 1-morphism on a ring R is given by regarding R as an (R,R)-

bimodule.

� For a triple of rings R,S,T horizontal composition is given by the tensor

product of bimodules

⊗S :Bimod(S,T)×Bimod(R,S)→Bimod(S,T)

(N,M) 7→M⊗SN.

We note that the tensor product of bimodules exists only up to unique

isomorphism but the de�nition of horizontal composition forces us to choose

a speci�c realisation of the tensor product. This de�nition involves a choice

for every pair of modules. Any choice we make is equivalent to any other,

yet a choice nonetheless.

� For rings Q,R,S,T , a (Q,R)-bimodule L, an (R,S)-bimoduleM and an (S,T)-

bimodule N the components of the associator are given by the canonical

isomorphism

aN,M,L :L⊗R(M⊗SN)→(L⊗RM)⊗SN,
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the components of the left unitor by the canonical isomorphism

lM :M⊗SS→M

and the components of the right unitor by the canonical isomorphism

rM :R⊗RM→M.

� Since tensor products are unique up to unique isomorphism, the triangle

axiom and the pentagon axiom have to hold, since both ways of going around

the diagrams must be the same unique isomorphism.

Lastly, similarly to how a category can have a property, a bicategory can have that

property for each of its Hom-categories.

Definition 2.10. (Local Properties) Suppose P is a property of categories. A

bicategory B is locally P if every Hom-category of B has property P. In particular,

B is

� locally discrete if each Hom-category is discrete,

� locally idempotent complete if each Hom-category is idempotent complete.

Example 2.11. (Categories) An ordinary category C gives rise to a locally discrete

bicategory and thus a 2-category by regarding every Hom-set as a discrete category.

Having de�ned bicategories, we are now interest to look at morphisms between

bicategories. These can take many shapes but in this thesis we are interested in

the following ones.

Definition 2.12. (Pseudofunctor) Let B be a bicategory with associator a and

left and right unitors l and r and let C be a bicategoty with associator a′ and left

and right unitors l′ and r′. A pseudofunctor F :B→C consists of the following

data.

� An assignment F :ObB→ObC on objects.

� For each pair of objects A,B∈B, a functor

FAB :B(A,B)→C(FA,FB).

The subscripts in F on Hom-categories will often be omitted.

� For each object A∈B, an isomorphism

F0A : idFA→FidA.
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� For each triple of objects A,B,C∈B a natural isomorphism

F2ABC :c
′
FA,FB,FC(FBC×FAB)→FACcABC.

The subscripts in F2 will be used to denote its component morphisms

F2g,f :Fg◦Ff→F(g◦f).

The above data is required to make the following three diagrams commute for all

1-morphisms f∈B(A,B), g∈B(B,C) and h∈B(C,D).

Compatibility between associators:

(Fh◦Fg)◦Ff Fh◦(Fg◦Ff)

F(h◦g)◦Ff Fh◦F(g◦f)

F((h◦g)◦f) F(h◦(g◦f))

a′

F2
h,g

◦idFf idFh◦F2
g,f

F2
h◦g,f F2

h,g◦f

Fa

Compatibility between unitors:

idFB◦Ff Ff Ff◦idFA Ff

FidB◦Ff F(idB◦f) Ff◦FidA F(f◦idA)

l′

F0
B

◦idFf idFf◦F0
A

r′

F2
idB,f

Fl

F2
f,idA

Fr

A pseudofunctor between 2-categories where F0 and F2 are given by identities, is

called a 2-functor.

Example 2.13. (Identity Pesudofunctor) Let B be a bicategory. The identity on

B de�nes a pesudofunctor idB :B→B in the following way.

� The assignment on objects assigns each object in B to itself.

� The functors on the Hom-categories are the appropriate identity functors.

� id0B and id2B are given by identities.

� The compatibility diagrams commute trivially.

Example 2.14. (Constant Pseudofunctor) Let B and C be bicategories, and let X

be an object in C. The pseudofunctor ∆X :B→C is de�ned in the following way.

� ∆X assigns X to every object in B.
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� For each pair of objects A,B in B the functor ∆X :B(A,B)→C(X,X) is de�ned
to be the constant functor at idX.

� ∆0X is given by the identity on idX.

� ∆2X is given by lidX =ridX. The fact that this equality holds follows from the

Coherence Theorem for bicategories.

� It also follows, that the compatibility diagrams commute.

We call this pseudofunctor the constant pseudofunctor at X.

Analogously to how we are interested in representable functors in ordinary cate-

gory theory, we are also interested in representable pseudofunctors for which we

�rst need to show the following.

Remark 2.15. Let B be a bicategory and f :A→B a 1-morphism in B and let X

be another object in B. Then precomposition with f de�nes a functor

f∗ :B(B,X)→B(A,X).

A 1-morphism g :B→X gets mapped to the morphism g◦f :A→X and a 2-morphism

α :g→g′ gets mapped onto the 2-morphism α◦idf. Functoriality follows from the

functoriality of horizontal composition in B. Analogously, postcomposition with f

de�nes a functor

f∗ :B(X,A)→B(X,B).

Example 2.16. (Representable Pseudofunctor) Let B be a bicategory and X an

object in B. The pseudofunctor B(−,X) :B→Catop is de�ned in the following way.

� B(−,X) assigns to an object A in B the category B(A,X).

� The functor B(−,X)AB :B(A,B)→Cat(B(B,X),B(A,X)) is de�ned by map-

ping a 1-morphism f :A→B to the functor f∗. A two morphism α :f→f′ is

mapped onto the natural transformation B(α,X) :f∗→(f′)∗ with components

B(α,X)g= idg◦α :g◦f→g◦f′.

the naturality of B(α,X) and functorality of B(−,X)AB both follow from the

functorality of horizontal composition in B.

� The isomorphism B(−,X)0A : idB(A,X)→B(idA,X)= id∗
A is given by r−1.
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� The isomorphism B(−,X)2g,f :f∗g∗→(g◦f)∗ has components

(h◦g)◦f→h◦(g◦f)

given by the associator a in B. Naturality follows from the naturality of a.

� It follows from the pentagon and triangle axioms in B, that the compatibility

diagrams commute.

Analogously, we get a pseudofunctor B(X,−):B→Cat.

Example 2.17. (Composition of Pseudofunctors) Let B,C,D be bicategories and

let F :B→C and G :C→D be pseudofunctors. The composite GF :B→C de�nes a

pseudofunctor in the following way.

� GF assigns to an object A in B the object GFA=G(F(A)).

� For two objectsA,B in B, GFAB is given byGFA,FBFA,B :B(A,B)→D(GFA,GFB).

� For an object A in B, GF0A is given by G(F0A)G
0
FA : idGFA→GFidA.

� For a triple of objects A,B,C in B, the natural isomorphism GF2ABC has

components

G(F2g,f)G
2
Fg,Ff :GFg◦GFf→GF(g◦f).

� It follows that the compatibility diagrams commute.

Where in ordinary category theory we have a natural transformation between

functors, in bicategory theory we have strong transformations between pseudo-

functors. These are once again not the most general version of a bicategorical

natural transformation but they are su�cient for this thesis.

Definition 2.18. (Strong Transformation) Let F,G :B→C be pseudofunctors. A

strong transformation α :F→G consists of the following data.

� For each object A in B, a component 1-morphism αA :FA→GA.

� For each pair of objects A,B in B, a natural isomorphism

α :α∗
AG→(αB)∗F :B(A,B)→C(FA,GB)

with component 2-isomorphisms

αf : (Gf)◦αA→αB◦(Ff).

This can be represented by the following diagram.
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FA FB

GA GB

Ff

αA αB

Gf

αf

Commutative diagrams like this one where surfaces are equipped with 2-morphisms

are explained in great detail in chapter 3 of [JY21]. This data is required to sat-

isfy the following two equalities for all objects A,B,C and 1-morphisms f :A→B,

g :B→C.

Unitality:

FA FA

GA GA

FidA

GidA

idGA

αA αA

αidA

G0

=

FA FA

GA GA

FidA

idFA

idGA

αA αA
αA

r−1

l

F0

Naturality:

FA FC

GA

GB

GC

αA αC

F(gf)

G(gf)

Gf Gg

G2

αgf

=

FA

FB

FC

GA

GB

GC

αA

αB

αC

F(gf)

Ff Fg

Gf Gg

F2

αf αg

Example 2.19. (Identity Strong Transformation) Let F :B→C be a pseudofunctor.

We can de�ne the identity idF on F to be the following strong transformation.

� For each object A in B, αA :FA→FA is given by idFA.

� For each 1-morphism f :A→B in B, αf : (Ff)idFA→ idFB(Ff) is given by l
−1
FfrFf.

� This satis�es the unitality and naturality conditions.
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Example 2.20. (Composition) Let α :F→G, β :G→H be strong transformations

for pseudofunctors F,G,H :B→C. We can de�ne the composite strong transforma-

tion β◦α :F→H in the following way.

� For each object A in B, we have (β◦α)A=βA◦αA :FA→HA.

� For each morphism f :A→B, (β◦α)f is given by

(Hf)◦βA◦αA βB◦(Gf)◦αA βB◦αB◦(Ff).
βf◦idαA

idβB
◦αf

� This satis�es the unitality and naturality conditions.

Unlike in ordinary category theory, in bicategory theory we further have morphism

between strong transformations, since strong transformations carry coherence data

in the form of their component 2-isomorphisms.

Definition 2.21. (Modi�cation) Let α,β :F→G be strong transformations be-

tween pseudofunctors F,G :B→C. A modi�cation Γ :α→β consists of component

2-morphisms ΓA :αA→βA in C(FA,GA) for each object A in B which satisfy the

following equality

FA FB

GA GB

Ff

Gf

αA αB βB
αf ΓB =

FA FB

GA GB

Ff

Gf

αA βA βBβf
ΓA

for each 1-morphism f :A→B in B.

Example 2.22. (Identity Modi�cation) Let α :F→G be a strong transformation

between pseudofunctors F,G :B→C. The identity modi�cation idα on α has com-

ponent 2-morphisms idαA
:αA→αA for each object A in B.

Example 2.23. (Composition) Let Γ :α→β and Λ :β→γ between strong trans-

formations α,β,γ :F→G between pseudofunctors F,G :B→C. The composite ΛΓ :

α→γ has component 2-morphism (ΛΓ)A=ΛAΓA for each object A in B.

Akin to how functors and natural transformations assemble into a category, we

have the following.
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Remark 2.24. For two given pseudofunctors F,G :B→C, we have a category

Bicat(B,C)(F,G) which has strong transformations from F to G as objects and

modi�cations between them as morphisms.

Example 2.25. (Whiskering) Let Γ :α→β and Λ :γ→δ be modi�cations between

strong transformations α,β :F→G, γ,δ :G→H between pseudofunctors F,G,H :B→
C. We can de�ne the modi�cation Λ◦Γ :γ◦α→δ◦β with component 2-morphisms

(Λ◦Γ)A=ΛA◦ΓA :αA◦γA→βA◦δA.

Remark 2.26. Let B and C be bicategories. There exists a bicategory Bicat(B,C)
which has pseudofunctors from B to C as objects, strong transformations between

these as 1-morphisms and modi�cations between those as 2-morphisms. The asso-

ciator and left and right unitors are given component-wise by the associator and

left and right unitors in C.

In ordinary category theory we have the notion of an equivalence of categories. If

two categories are equivalent, we expect them to look alike under all reasonable

aspects that interest us as category theorists. For bicategories we also have a

notion of equivalence which we are now able to state.

Definition 2.27. (Equivalence of Bicategories) We call two bicategories B and C
equivalent if there exist pseudofunctors F :B→C and G :C→B such that GF≃ idB

in Bicat(B,B) and FG≃ idC in Bicat(C,C). We notate this as B≃C and call F and

G equivalences. Note that although it carries the same name as an equivalence in

a bicategory, this is a weaker notion since the composites need only be equivalent

to the identities, not isomorphic.

This de�nition, while nice to formulate, is often hard to work with. So we can

de�ne the following.

Definition 2.28. (Essential Surjectivity) A pseudofunctors F :B→C is called es-

sentially surjective if for each object C in C there exits an object B in B such

that FB≃C in C.

Definition 2.29. (Fully Faithfulness) A pseudofunctors F :B→C is called fully

faithful if for each pair of objects objectA,B in B the functor F :B(A,B)→C(FA,FB)
is an equivalence of categories.

Theorem 2.30. A pseudofunctor F :B→C is an equivalence if and only if it

is essentially surjecive and fully faithful.

A proof of this theorem can be found in chapter 7.4 of [JY21].

Lastly, something that will become interesting to us later when looking at colimits

in bicategories, is the notion of adjoint pseudofunctors.
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Definition 2.31. (Adjoint Pseudofunctors) Let B and C be bicategories. Two

pseudofunctors F :B→C and G :C→B are called adjoint if there exist strong trans-

formations η : idB→GF, ϵ :FG→ idC and invertible modi�cations Γ : idF→(ϵF)◦(Fη)
and Λ : (Gϵ)◦(ηG)→ idG. We say that F is left adjoint to G, G is right adjoint

to F and the pseudofunctors F and G form an adjunction.

Proposition 2.32. Adjoint functors induce an equivalence of categories

C(FB,C)≃B(B,GC)

for each pair of objects B in B and C in C.

Proof. Let f :FB→C be a 1-morphism in B. We can de�ne a morphism f♭ :B→GC

via

B GFB GC.
ηB Gf

Let g :FB→C be another 1-morphism and θ :f→g a 2-morphism. We can de�ne

a 2-morphism θ♭ :f♭→g♭ via

B GFB GC.
ηB

Gf

Gg

Gθ

One can check that this de�nes a functor (−)♭ :C(FB,C)→B(B,GC). For a 1-

moprhism f :B→GC, we can analogously de�ne a morphism f♯ :FB→C via

FB FGC C.
Ff ϵC

This also de�nes a functor (−)♯ :B(B,GC)→C(FB,C). We will now show that

these two functors form an equivalence of categories. We can construct a natural

transformation idC(FB,C)→((−)♭)♯ with components given by the diagram

FB FGFB FGC

FB C

FηB FGf

idFB
ϵFB ϵC

f

ΓB

ϵf

i.e., we have an isomorphism f→(f♭)♯ given by
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f f◦idFB f◦ϵFB◦FηB ϵC◦FGf◦FηB=(f♭)♯.r−1 f◦ΓB ϵf◦FηB

That these isomorphism form a natural isomorphism, follows from the equality of

the following two diagrams.

FB FGFB FGC

FB C

FηB
FGg

idFB
ϵFB ϵC

g

f

ΓB
ϵf

θ

=

FB FGFB FGC

FB C

FηB

FGf

FGg

idFB
ϵFB ϵC

f

ΓB

ϵf

FGθ

We thus have a natural isomorphism idC(FB,C) ∼=((−)♭)♯ and analogously also a nat-

ural isomorphism ((−)♯)♭ ∼= idB(B,GC). Therefore they form an equivalence of cate-

gories.

Example 2.33. Now that we've de�ned adjoint pseudofunctors, we have the

proper langauge to talk about an example of adjoint pseudofunctors that we've

already seen. Namely, idempotent completion (̂−) :Cat→Catic is left adjoint to

the forgetful 2-functor Catic→Cat. We can now see that indeed de�nes an ad-

junction.

2.2 Presheaves and the Yoneda Lemma

With the Yoneda Lemma being so prevalent in category theory that some category

theorists claim that more or less everything is a consequence of the Yoneda lemma,

it is of no surprise that there also exists a version of the Yoneda lemma for bicat-

egories. In the following we will only state these versions without proving them

ourselves. The proofs for these are analogous to their 1-categorical counterparts

and can be found in detail in chapter 8 of [JY21].

Definition 2.34. (Bicategory of Presheaves) Let B be a bicategory. We call a

pseudofunctor B→Catop a presheaf on B. Presheaves, strong transformations and

modi�cations form a bicategory Bicat(B,Catop). We will denote this bicategory

as Psh(B).

Theorem 2.35. (Bicategorical Yoneda Lemma) Let B be a bicategory, A an

object in B, and S :B→Catop a presheaf on B. The category of strong transfor-
mations and modi�cations Psh(B)(B(−,A),S) between the presheaves B(−,A)
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and S is equivalent to the category SA via the functor

Psh(B)(B(−,A),S)→SA

α 7→αA(idA).

Furthermore, let F :B→Cat be a pseudofunctor, the category of strong trans-

formations and and modi�cations Bicat(B,Cat)(B(A,−),F) between B(A,−)

and F is equivalent to the category FA via

Bicat(B,Cat)(B(A,−),F)→FA

α 7→αA(idA).

Theorem 2.36. (Bicategorical Yoneda Embedding) Let B be a bicategory. The

pseudofunctor

Y :B →Psh(B)
A 7→B(−,A)

is fully faithful, which means it embeds the bicategory B into Psh(B).

Corollary 2.37. Every bicategory B is equivalent to a 2-category.

Proof. Psh(B) is a 2-category since Catop is a 2-category. The image of H now

de�nes a sub-2-category of Psh(B) equivalent to B. Thus B is equivalent to a

2-category.

2.3 Weighted Colimits

We have now laid the necessary groundwork to be able to talk about a bicategorical

variant of colimits.

Definition 2.38. (Weighted Colimit) Let J and B be bicategories. Given a pseud-

ofunctor W :J→Catop, which we will call weight, and another pseudofunctor

F :J→B, the colimit of F weighted by W is given in the following way. We

can de�ne a the pseudofunctor

B(F,−):B→Bicat(J,Catop).

� It maps an object A in B onto the pseudofunctor B(F−,A) :J→Catop.

� For each pair of objects A,B in B, we get a functor

B(F,−):B(A,B)→Bicat(J,Catop)(B(F−,A),B(F−,B)).

which maps a 1-morphism f :A→B onto the strong transformation f∗idF :

B(F−,A)→B(F−,B) and a 2-morphism α :f→f′ onto the modi�cation αididF.
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We can now form the pseudofunctor

Bicat(J,Catop)(W,B(F,−)) :B→Cat.

If this pseudofunctor is representable, i.e., there exists an object X and an equiv-

alence of pseudofunctors φ :B(X,−)→Bicat(J,Catop)(W,B(F,−)), we call X to-

gether with φ the colimit of F along W or just the weighted colimit of F and we

call φ a colimiting strong transformation.

By the Yoneda Lemma, the data of this strong transformation is equivalent to

the object φX(idX) in Bicat(J,Catop)(W,B(F−,X)), i.e., a strong transformation

λ :W→B(F−,X) such that precomposition with λ de�nes an equivalence

λ∗ :B(X,−)→Bicat(J,Catop)(W,B(F,−)).

For this thesis we are interested in what it means for a weighted colimit to be

preserved by a pseudofunctor and the analogues of absolute colimits and absolute

categories.

Definition 2.39. (Preservation of Weighted Colimits) Let J,B,C be bicategories,

W :J→Catop a weight and F :J→B and G :B→C pseudofunctors. Let colimWF be

the weighted colimit of F with strong transformation λ :W→B(F−,colimWF). We

say G preserves that colimit if precomposition with Gλ :W→C(GF−,GcolimWF)

de�nes an equivalence

(Gλ)∗ :C(GcolimWF,−)→Bicat(J,Catop)(W,C(GF,−)).

Definition 2.40. (Absolute Weighted Colimit) Let J,B be bicategories, W :J→
Catop a weight and F :J→B a pseudofunctor. A colimit of F weighted by W is

called absolute if for every bicategory C and every pseudofunctor G :B→C, it is
preserved by G.

Definition 2.41. (Absolute Weight) Let J be a bicategory. A weightW :J→Catop

is called absolute if for every bicategory B and every pseudofunctor F :J→B, the
colimit of F along W is absolute if it exists.

The statement that left adjoint functors preserve colimits also holds true in the

bicategorical case.

Proposition 2.42. Left adjoint pseudofunctors preserve weighted colimits.

Proof. Let J,B be bicategories, W :J→Catop a weight, F :J→B pseudofunctor

and λ :W→B(F−,colimWF) a colimiting strong transformation. Now let C be an-

other bicategory and G :B→C and H :C→B adjoint pseudofunctors with strong

transformations η : idB→HG and ϵ :GH→ idC. We will show that the strong trans-

formation Gλ :W→C(GF−,GcolimWF) is colimiting by showing that the following

diagram commutes up to isomorphism for all objects C in C
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C(GcolimWF,C) Bicat(J,Catop)(W,C(GF−,C))

B(colimWF,HC) Bicat(J,Catop)(W,B(F−,HC))

(Gλ)∗

(−)♭ (−)♭

λ∗

where (−)♭ is de�ned pointwise on strong transformation. All of the functors

except (Gλ)∗ are known to be equivalences of categories, so we only need to show

that it commutes up to isomorphism. Let f :GcolimWF→C be a 1-morphism in C.
We have an isomorphism (f∗Gλ)

♭ ∼=f♭∗λ given by the diagram

Fj colimWF

HGFj HGcolimWF HC

λj(a)

ηFj ηcolimWF

HGλj(a) Hf

f♭
ηλj(a)

where j is an object in J and a an object inWj. We can also read o� of this diagram

that this isomorphism is natural. Thus G preserves the weighted colimit.

Definition 2.43. (Weighted Colimits in Locally P Bicategories) We can also de�ne

the notion of a weighted colimit in a locally P category, where P is a property of

categories. Let CatP be the full subbicategory of Cat of all categories that have

property P and let B be a locally P bicategory. Let J be another bicategory and

F :J→B a pseudofunctor. A weight is now a pseudofunctor W :J→CatopP . A

weighted colimit of F along W now consists of a strong transformation λ :W→
B(F−,X) such that

λ∗ :B(X,A)→Bicat(J,CatopP )(W,B(F,A))

de�nes an equivalence of categories for all objectsA in B. In general every weighted
colimit in a locally P bicategory can be regarded as a weighted colimit in an

ordinary bicategory by simply regarding the weight W :J→CatopP as an ordinary

weight W :J→Catop. But by restricting ourselves to locally P bicategories and

weights that take values in CatP, we will be able to �nd weights which are absolute

and which wouldn't be absolute in the general case. The most relevant case for

this thesis will be that of locally idempotent complete bicategories.
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2.4 Weighted Colimits in Cat

In many ordinary categories we can give explicit formulas for calculating certain

colimits. By explicitly calculating a colimit we usually also gain explicit formulas

for the universal property of a colimit which can be used to understand how the

colimit interacts with other objects. In the case of the 2-category Cat, we also

�nd an explicit formula for a colimit analogous to the one in the 1-category Set.

This then also allows us to understand some weighted colimits in other categories.

By explicitly constructing a weighted colimit for an arbitrary bicategory J, weight
W :J→Catop and pseudofunctor F :J→Cat, we also show that Cat is cocomplete.

Construction 2.44. First we choose a set of objects ObJ for J. We look at the

diagram

∐
j,j′,j′′∈ObJ

Wj′′×J(j′,j′′)×J(j,j′)×Fj
∐

j,j′∈ObJ

Wj′×J(j,j′)×Fj
∐
j∈ObJ

Wj×Fj
d0
2

d1
2

d2
2

d0
1

d1
1

s0
0

where the maps are de�ned in the following way

d02 :(a,g,f,x) 7→(a,g,F(f)x),

d12 :(a,g,f,x) 7→(a,gf,x),

d22 :(a,g,f,x) 7→(W(g)a,f,x),

d01 :(a,f,x) 7→(a,F(f)x),

d11 :(a,f,x) 7→(W(f)a,x),

s00 :(a,x) 7→(a,idj,x).

We now de�ne the category colimWF by taking the category
∐

j∈ObJWj×Fj and
freely adding isomorphism determined by d01 and d

1
1 that are subject to relations

given by s00, d
0
2, d

1
2 and d

2
2.

For each pair of objects j,j′ in J and an object (a,f,x) in Wj′×J(j,j′)×Fj we freely
add an isomorphism

γa,f,x : (a,F(f)x)→(W(f)a,x)

which assemble into a natural transformation

γ−,−,− : (−,F(−)−)→(W(−)−,−):Wj′×J(j,j′)×Fj→colimWF.

These natural transformations have to satisfy the following two conditions. For

all j,j′,j′′ ∈ObJ, x in Fj, f : j→ j′, g : j′→ j′′ and a in Wj′′, the diagram
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(a,F(g)F(f)x) (W(g)a,F(f)x) (W(f)W(g)a,x)

(a,F(gf)x) (W(gf)a,x)

(ida,F2idx)

γa,g,F(f)x γW(g)a,f,x

(W2ida,idx)

γa,gf,x

has to commute and for all j∈ObJ, x in Fj and a in Wj, the diagram

(a,idFjx) (a,x) (idWja,x)

(a,F(idj)x) (W(idj)a,x)

=

(ida,F0idx)

=

(W0ida,idx)

γa,idj,x

has to commute. We call these two diagrams the naturality and unitality con-

ditions of γ. colimWF is now the category obtained by adding these ismorphism

subject to the given relations freely to
∐

j∈ObJWj×Fj. We now also de�ne the

functors

γj :W(j)×F(j)→colimWF

which are given by inclusions since W(j)×F(j) is a subcategory of colimWF.

We can now de�ne a strong transformation

λ :W→Cat(F−,colimWF) :J→Catop.

For each object j in J, we have a 1-morphism λj :Wj→Cat(Fj,colimWF) given by

λj(a)(x)=γj(a,x)=(a,x) for each a in Wj and x in Fj. Since γj is a functor, both

λj and λj(a) also de�ne functors.

For each pair of objects j,j′ in J, we also have a natural transformation

λ :λ∗
j′Cat(F−,colimWF)→(λj)∗W :J(�,�′)→Cat(Wj′,Cat(Fj,colimWF))

with component morphisms λf :Cat(Ff,colimWF)λj′ →λjWf which are de�ned by

λf,a,x=γa,f,x : (Cat(Ff,colimWF)λj′(a))(x)=λj′(a)(F(f)x)

=(a,F(f)x)→(W(f)a,x)=λj(W(f)a)(x)

for each a in Wj′ and x in Fj. The naturality of λ and λf and λf,a all follow from

the naturality of γ. Lastly we need to check that λ satis�es the naturality and

unitality conditions, this follows since γ needs to satisfy its own naturality and

unitality conditions.

Theorem 2.45. Given a bicategory J, a weight W :J→Catop and a pseudo-

functor F :J→Cat, construction 2.44 de�nes a weighted colimit of F along

W.
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Proof. We next need to check that precomposition with λ :W→Cat(F−,colimWF)

de�nes an equivalence of pseudofunctors

Cat(colimWF,−)→Bicat(J,Catop)(W,Cat(F,−)).

For this it su�ces to check that it de�nes an equivalence of categories

Cat(colimWF,C)→Bicat(J,Catop)(W,Cat(F−,C))

for each category C. As it turns out, a functor colimWF→C is determined by the

same data as a strong transformation W→Cat(F−,C) just presented in di�erent

ways. This will lead to an isomorphism of categories.

A strong transformation ϵ :W→Cat(F−,C) is given by a J-indexed family of func-

tors ϵj :Wj→Cat(Fj,C) and for each morphism f : j→ j′ in J a natural isomorphism

ϵf :Cat(Ff,C)ϵj′ →ϵjWf :Wj
′→Cat(Fj,C) such that the ϵf are natural in f and sat-

isfy the naturality and unitality conditions.

Using the fact that for categories C1,C2,D we have an isomorphism of categories

Cat(C1×C2,D) ∼=Cat(C1,Cat(C2,D))

given by currying, know that the family (ϵj)j∈ObJ is equivalent to a J-indexed
family of functors ϵ̃j :Wj×Fj→C and the ϵf turn into natural transformations

ϵ̃f : ϵ̃j′(−,F(f)−)→ ϵ̃j(W(f)−,−):Wj′×Fj→C

Naturality in f now means that they assemble into a natural transformation

ϵ̃ : ϵ̃j′(−,F(−)−)→ ϵ̃j(W(−)−,−):Wj′×J(j,j′)×Fj→C.

The naturality condition tranlates into the following commutative diagram

ϵ̃j′′(a,F(g)F(f)x) ϵ̃j′(W(g)a,F(f)x) ϵ̃j(W(f)W(g)a,x)

ϵ̃j′′(a,F(gf)x) ϵ̃j(W(gf)a,x)

ϵ̃j′′ (ida,F
2idx)

ϵ̃a,g,F(f)x ϵ̃W(g)a,f,x

ϵ̃j(W
2ida,idx)

ϵ̃a,gf,x

which has to hold for all objects j,j′,j′′ in J, morphisms f : j→ j′ and g : j′→ j′′ and

objects a in Wj′′ and x in Fj. The unitality condition tranlates into the diagram

ϵ̃j(a,idFjx) ϵ̃j(a,x) ϵ̃j(idWja,x)

ϵ̃j(a,F(idj)x) ϵ̃j(W(idj)a,x)

=

ϵ̃j(ida,F
0idx)

=

ϵ̃j(W
0ida,idx)

ϵ̃a,idj,x
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which has to commute for all objects j in J, a inWj and x in Fj. We can already see

that these are exactly the conditions we asked of γ when constructing colimWF.

We will now look at the data that a functor G :colimWF→C consists of. Since

colimWF was constructed by adding isomorphisms to the category
∐

j∈ObJWj×Fj,
the functor G consists a family of functors Gj :Wj×Fj→C that also has to map

the components γ on isomorphisms in C that have to satisfy the same properties

as γ. So we have a natural transformation

G(γ−,−,−) :G(−,F(−)−)→G(W(−)−,−):Wj′×J(j,j′)×Fj→C

and the components of this natural transformation also have to satisfy the unitality

and naturality conditions. So we indeed see that a functor colimWF→C consists of

the same data as a strong transformation W→Cat(F−,C) and the presentation of

this data only di�ers by currying. This currying is also induced by precomposition

with λ since given a functor G :colimWF→C, the strong transformation G∗λ :W→
Cat(F−,C) is de�ned by

(G∗λ)j(a)(x)=(G∗λj)(a)(x)=(Gλj(a))(x)=G(λj(a)(x))=G(a,x)

for objects j in J, a in Wj and x in Fj, and by

(G∗λ)f,a,x=Gλf,a,x=Gγa,f,x

for objects j,j′ in J, a morphism f : j→ j′ and objects a in Wj′ and x in Fj. To show

that this induces an isomorphism of categories

Cat(colimWF,C) ∼=Bicat(J,Cat)(W,Cat(F−,C))

we also have to show that a natural transformation between such functors also

only di�ers by currying from a modi�cation between such strong transformations.

Let ϵ,η :W→Cat(F−,C) be two strong transformations and let Γ :ϵ→η be a modi-

�cation between them. Γ consists of a J-indexed family of natural transformations

Γj :ϵj→ηj :Wj→Cat(Fj,C)

which since Γ is a modi�cation has to satisfy a certain property. Using currying,

this the natural transformations Γj correspond to natural transformations

Γ̃j : ϵ̃→ η̃ :Wj×Fj→C

and the property they need to satisfy can be written as the diagram

ϵ̃j′(a,F(f)x) ϵ̃j(W(f)a,x)

η̃j′(a,F(f)x) η̃j(W(f)a,x)

ϵ̃a,f,x

Γ̃j′,a,F(f)x Γ̃j,W(f)a,x

η̃a,f,x
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which has to commute for all objects j,j′ in J, morphisms f : j→ j′ and objects a in

Wj′ and x in Fj. Now let G,H :colimWF→C be two functors and let φ :G→H be a

natural transformations. We've already seen that due to the structure of colimWF

the two functors G,H consists of J-indexed families of functors Gj,Hj :Wj×Fj→C
together with the natural transformations G(γ) and H(γ). A natural transfor-

mation φ :G→H now consist of a J-indexed family of natural transformations

φj :Gj→Hj which also have to be natural with respect to γ. This can be repre-

sented by the diagram

Gj′(a,F(f)x) Gj(W(f)a,x)

Hj′(a,F(f)x) Hj(W(f)a,x)

G(γa,f,x)

φj′,(a,F(f)x) φj,(W(f)a,x)

H(γa,f,x)

which has to commute for all objects j,j′ in J, morphisms f : j→ j′ and objects a

in Wj′ and x in Fj. So now we also see that a natural transformation φ :G→H

between functors G,H :colimWF→C consists of the same data as a modi�cation

Γ :ϵ→η between strong transformations ϵ,η :W→Cat(F−,C) and the presentation

of this data also only di�ers by currying.

We have therefore shown that precomposition with λ :W→Cat(F−,colimWF), which

does the same as currying, actually de�nes an isomorphism

λ∗ :Cat(colimWF,C)→Bicat(J,Cat)(W,Cat(F−,C)).

for each category C. Thus colimWF together with λ forms a colimit of F along

W.

Corollary 2.46. The bicategory Cat of categories is cocomplete, i.e., for every

bicategory J, every weight W :J→Catop and every pseudofunctor F :J→Cat the

colimit of F weighted by W exists.

We also want to show that Catic is cocomplete as a locally idempotent complete

bicategory. For this we will �rst have to show that it actually is locally idempotent

complete.

Lemma 2.47. For a category C and an idempotent complete category D, the

category Cat(C,D) of functors and natural transformations is idempotent com-

plete.

Proof. Let F :C→D be a functor and p :F→F an idempotent natural transforma-

tion, i.e., for every object C in C the morphism pC :FC→FC is an idempotent.

Since these are morphisms in D, we can choose a splitting for every idempotent

pC. We now choose for every C in C an object SC in D and morphisms fC :FC→SC
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and gC :SC→FC such that gCfC=pC and fCgC= idSC. We can now turn S into a

functor. Let h :C→D be a morphism in C. We de�ne S(h)=fDF(h)gC. We now

have S(idC)=fCF(idC)gC=fCgC= idSC and for another morphism k :D→E, we have

S(k)S(h)=fEF(k)gDfDF(h)gC=fEF(k)pDF(h)gC=fEF(k)F(h)pCgC

=fEF(kh)gCfCgC=fEF(kh)gCidSC=S(kh)

which shows that S de�nes a functor. We lastly need to show that the fC and

gC de�ne natural transformations f :F→S and g :S→F. For this we need to check

that the following two diagrams commute.

FC FD SC SD

SC SD FC FD

F(h)

fC fD

S(h)

gC gD

S(h) F(h)

We can show

S(h)fC=fDF(h)gCfC=fDF(h)pC=fDpDF(h)=fDgDfDF(h)= idSDfDF(h)=fDF(h)

and thus f :F→S de�nes a natural transformation and

gDS(h)=gDfDF(h)gC=pDF(h)gC=F(h)pCgC=F(h)gCfCgC=F(h)gCidSC=F(h)gC

and thus g :S→F de�nes a natural transformation. The natural transformations f

and g now satisfy gf=p and fg= idS and thus p splits.

Corollary 2.48. The bicategories Catic and Catopic are locally idempotent com-

plete.

Theorem 2.49. The locally idempotent complete bicategory Catic of idem-

potent complete categories is cocomplete, i.e., for every bicategory J, ev-

ery weight W :J→Catopic and every pseudofunctor F :J→Catic the colimit of

F weighted by W exists.

Proof. Let J be a bicategory, W :J→Catopic a weight and F :J→Catic a pseudo-

functor. We can regard bothW and F as pseudofunctors taking values in Cat. By

the previous theorem we now know that we can construct a category C along with a

strong transformation λ :W→Cat(F−,C) such that we have a natural equivalence

λ∗ :Cat(C,−)→Bicat(J,Catop)(W,Cat(F,−)).

Since we have a left adjoint pseudofunctor (̂−) :Cat→Catic, we have a natural

equivalence

((̂−)λ)∗ :Catic(Ĉ,−)→Bicat(J,Catop)(W,Catic((̂−)F,−))
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where (̂−)λ is de�ned by

((̂−)λ)j(a)= λ̂j(a) : F̂j→ Ĉ

for each j in J and a in Wj. Since F already takes values in Catic, F and (̂−)F are

equivalent with an equivalence given by ιF :F→ (̂−)F which has components given

by ιFj :Fj→ F̂j. We also know that the diagram

F̂j Ĉ

Fj C

λ̂j(a)

ιFj

λj(a)

ιC

commutes. These two facts combined tell us that we have an equivalence

((ιC)∗λ)
∗ :Catic(Ĉ,−)→Bicat(J,Catop)(W,Catic(F,−))

and since W takes values in Catopic and Catic is locally idempotent complete, we

get the desired result that we have an equivalence

((ιC)∗λ)
∗ :Catic(Ĉ,−)→Bicat(J,Catopic )(W,Catic(F,−))

Another bicategory that interest us is the bicategory of presheaves over a given

bicategory.

Theorem 2.50. Let B be a bicategory. The bicategory Psh(B) is cocomplete.

Proof. Let J be a bicategory, W :J→Catop a weight and F :J→Psh(B) a pseudo-
functor. We can construct a weighted colimit of F along W in the following way.

Let A be an object in B. We now have the pseudofunctor F(−)(A) :J→Cat and

since Cat is cocomplete the weighted colimit of F(−)(A) along W exists, i.e., we

have a colimiting strong transformation λA :W→Cat(F(−)(A),colimWF(−)(A)).

We now de�ne the presheaf colimWF :B→Catop via colimWF(A)=colimWF(−)(A).

Let B be another object in B and f :A→B a morphism. We can now de�ne

the strong transformation F(−)(f)∗λA :W→Cat(F(−)(B),colimWF(A)) which has

components (F(−)(f)∗λA)j(a)=λA,j(a)F(j)(f)

F(j)(B) F(j)(A) colimWF(A)
F(j)(f) λA,j(a)
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for each j in J and a in Wj. By the universal property of the colimit, we get a

morphism

colimWF(f) :colimWF(B)→colimWF(A)

and an isomorphism λf :colimWF(f)∗λB→F(−)(f)∗λA which we can represent by the

following diagram

F(j)(B) F(j)(A)

colimWF(B) colimWF(A)

F(j)(f)

λB,j(a) λA,j(a)

colimWF(f)

λf,j,a

For a second 1-morphism g :A→B and a 2-morphism θ :f→g, we get a morphism

of strong transformations

F(−)(θ)∗λA :F(−)(f)∗λA→F(−)(g)∗λA

which gives us a morphism colimWF(θ) :colimWF(f)→colimWF(g). This can be

represented as

F(j)(B) F(j)(A)

colimWF(B) colimWF(A)

F(j)(g)

F(j)(f)

colimWF(f)

λB,j(a) λA,j(a)

F(j)(θ)

λf,j,a
=

F(j)(B) F(j)(A)

colimWF(B) colimWF(A)

F(j)(g)

colimWF(g)

colimWF(f)

λB,j(a) λA,j(a)

colimWF(θ)

λg,j,a

The presheaf colimWF is now well de�ned along with a strong transformation

λ :W→Psh(B)(F,colimWF) with components λj,A(a)=λA,j(a). We must now show

that λ de�nes a colimiting strong transformation. Let κ :W→Psh(B)(F,S) be

another strong transformation for a presheaf S. For an object A in B, we can then

de�ne the natural transformation κA :Psh(B)(F(−)(A),S(A)) and by the universal

property of the colimit, we get a morphism φA :colimWF(A)→S(A) such that

κA ∼=(φA)∗λA. The φA assemble into a morphism of presheafs φ :colimWF→S and

we get an isomorphism κ ∼=φ∗λ. This shows that λ de�nes a colimit.

Lastly, we also want to show that the bicategory Pshic(B) of presheaves taking
values in idempotent complete categories is cocomplete as a locally idempotent

complete bicategory.

38



2 Bicategorical Prerequisites

Lemma 2.51. For a bicategory B and a locally idempotent complete bicategory

C the bicategory Bicat(B,C) is locally idempotent complete.

Proof. Let F,G :B→C be pseudofuncors, α :F→G a strong transformation and

p :α→α an idempotent modi�cation, i.e., for each object A in B the morphism pA :

αA→αA in C(FA,GA) is idempotent. Since C is locally idempotent complete, we

can choose a splitting for each pA for allA in B. We therefore have 1-morphisms sA :

FA→GA, and 2-morphisms fA :αA→sA and gA :sA→αA such that gAfA=pA and

fAgA= idsA . s :F→G forms a strong transformation with component 2-morphisms

sh :G(h)sA→sBF(h) given by

FA FB

GA GB

F(h)

G(h)

sA

αA

αB

sBgA fAαh

for a 1-morphism h :A→B in B. f :α→s and g :s→α now form modi�cations such

that gf=p and fg= ids and thus p splits.

Corollary 2.52. Let B be a bicategory. The bicategory Pshic(B)=Bicat(B,Catopic )
of idempotent complete presheafs on B is locally idempotent complete.

Combining the last two theorems and their proofs also yields the following result.

Corollary 2.53. Let B be a bicategory. The locally idempotent complete bi-

category Pshic(B) is cocomplete.
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3 Karoubi Completion

3 Karoubi Completion

Having now laid the bicategorical prerequisites, we can continue to look at the

bicategorical analogue of idempotent completion. From now on, we will suppress

coherence data whenever appropriate. Formally, this can be justi�ed since every

bicategory is equivalent to a 2-category.

3.1 2-Idempotents and their Splittings

We will now go on to de�ne the bicategorical analogue of an idempotent and of

its splitting. These de�nitions follow [GJF19].

Definition 3.1. (2-Idempotent) Let B be a bicategory. A 2-idempotent in B
consists of an object A in B, a 1-morphism p :A→A and 2-morphisms m :p2→p

and ∆ :p→p2 such that

(idp◦m)·(∆◦idp)=(m◦idp)·(idp◦∆)=∆·m and

m·∆= idp.

We denote a 2-idempotent by (A,p,m,∆) and whenever it is clear from context,

we will simply denote it as Ap.

Definition 3.2. (2-Idempotent Splitting) Let B be a bicategory and let (A,p,m,∆)

be a 2-idempotent in B. A splitting of Ap is given by an object B in B, 1-
morphisms f :A→B and g :B→A, 2-morphisms φ :f◦g→ idB, ψ : idB→f◦g and an

isomorphism γ :g◦f→p such that φ·ψ= ididB, m=γ·(idg◦φ◦idf)·(γ−1◦γ−1) and

∆=(γ◦γ)·(idg◦ψ◦idf)·γ−1. We say that the 2-idempotent p splits and we call B a

retract of A. We will later show that in certain cases a splitting of a 2-idempotent

is unique up to equivalence.

Definition 3.3. (Idempotent Completeness) We call a bicategory B 2-idempotent

complete if it is locally idempotent complete and if every 2-idempotent B splits.

Definition 3.4. (Free Walking 2-Idempotent (Splitting)) We will de�ne the bicat-

egory ♠2 to be the bicategory with two objects X and Y, 1-morphisms freely gen-

erated by f :X→Y and g :Y→X and 2-morphisms freely generated by φ :f◦g→ idY
and ψ : idY→f◦g satisfying the relation φ·ψ= ididY . We will call this bicategory

♠2 the free walking 2-idempotent splitting.

The bicategory ♣2 is de�ned to be the full subbicategory of ♠2 on the object X.

We will call this bicategory the free walking 2-idempotent. We then of course

have a fully faithful pseudofunctor ι :♣2→♠2.
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Remark 3.5. We can now also think of a 2-idempotent in B as a pseudofunctor

F :♣2→B since every such functor determines a 2-idempotent and we can de�ne

such a functor simply by choosing a 2-idempotent in B. Furthermore, a splitting

of F is then given by a functor F′ :♠2→B such that F′ι≃F.

3.2 Karoubi Completion of a Bicategory

In the following chapter, we de�ne the Karoubi completion of a locally idempotent

complete bicategory B and show that it forms an idempotent complete bicategory

and furthermore that it is universal among all bicategories with this property.

Definition 3.6. (Karoubi completion) Let B be a locally idempotent complete

bicategory. We de�ne the Karoubi completion B̂ to have the following data.

� Objects in B̂ are 2-idempotents in B, i.e., an object in B̂ is a collection

(A,p,m,∆) consisting of an object A in B, a 1-morphism p :A→A in B and

2-morphisms m :p2→p and ∆ :p→p2 in B such that

(idp◦m)·(∆◦idp)=(m◦idp)·(idp◦∆)=∆·m and

m·∆= idp.

Graphically, this can be represented as follows.

Two other useful properties follow from these requirements, namely associa-

tivity and coassociativity which graphically can be written in the following

way.
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With this, (A,p,m,∆) forms a special non-unital non-counital Frobenius al-

gebra. Whenever it is clear from context, we will denote (A,p,m,∆) as Ap.

� For each pair of objects (A,p,mp,∆p) and (B,q,mq,∆q) in B̂, we have a Hom-

category B̂(Ap,Bq). A 1-morphism in B̂ is a collection (f,◁,ρ,▷,λ) consisting
of a 1-morphism f :A→B in B , and 2-morphisms ◁:f◦p→f, ρ :f→f◦p,
▷:q◦f→f and λ :f→q◦f in B such that

(idf◦mp)·(ρ◦idp)=(◁◦idp)·(idf◦∆p)=ρ·◁, ◁ ·ρ= idf,

(idq◦▷)·(∆q◦idf)=(mq◦idf)·(idq◦λ)=λ·▷, ▷ ·λ= idf,

▷ ·(idq◦◁)=◁ ·(▷◦idp) and (λ◦idp)·ρ=(idq◦ρ)·λ.

Whenever it is clear from context, we will denote (f,◁,ρ,▷,λ) as f :Ap→Bq
or even just as f. Graphically, this can be represented as follows.
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We can also think of a 1-morphism in B̂ as a bimodule over special non-unital

non-counital Frobenius algebras with ◁ and ρ being the the right (co)action

and ▷ and λ being the left (co)action.

� A 2-morphism between (f,◁f,ρf,▷f,λf) and (g,◁g,ρg,▷g,λg) is a 2-morphism

φ :f→g in B such that

φ·◁f=◁g ·(φ◦idp), (φ◦idp)·ρf=ρg ·φ,
φ·▷f=▷g ·(idq◦φ) and (idq◦φ)·λf=λg ·φ.

This can be graphically represented in the following way.

� Vertical composition, i.e., composition of 2-morphisms is simply given by

the composition of 2-morphisms in B. It follows that identity 2-morphisms

are given by the identity 2-morphisms in B. This turns B̂(Ap,Bq) into a

category.

� Composition of 1-morphisms (or horizontal composition) is de�ned as fol-

lows. Let f :Ap→Bq and g :Bq→Cr be 1-morphisms in B̂. We can now form

the idempotent

κg◦f=(idg◦▷f)·(ρg◦idf)=(◁g ◦idf)·(idg◦λf) :g◦f→g◦f.

We de�ne the composition of f and g as the splitting of this idempotent. We

can graphically check that these two ways of writing this morphism do in

fact coincide and that it forms an idempotent.
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Since B is locally idempotent complete, we know that the idempotent κg◦f

admits a splitting and thus we can choose a 1-morphism g⊗qf :A→C and

2-morphisms φ :g◦f→g⊗qf and ψ :g⊗qf→g◦f such that φ·ψ= idg⊗qf and

ψ·φ=κg◦f, which we write graphically in the following way.

We can now de�ne right-p (co)actions, and left-r (co)actions on g⊗qf as

follows.

This in fact turns it into a morphism g⊗qf :Ap→Cr. Horizontal composition

of 2-morphisms is de�ned in the following way.
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This turns composition into a functor

cAp,Bq,Cr : B̂(Bq,Cr)×B̂(Ap,Bq)→ B̂(Ap,Cr).

It is important to note here that when de�ning the Karoubi completion of

a given bicategory B, we have to make a choice for each pair of morphisms

to be able to de�ne this functor. All possible choices will lead to equivalent

bicategories, but we have to make these choices none the less.

Let Ds be another object in B̂ and h :Cr→Ds another 1-morphism. The

1-morphisms (h⊗rg)⊗qf :Ap→Ds and h⊗r(g⊗qf) :Ap→Ds are now both

splittings of the idempotent given by

and thus we have a unique isomorphism ah,g,f : (h⊗rg)⊗qf→h⊗r(g⊗qf) and

in general we get a natural isomorphism

aAp,Bq,Cr,Ds :cAp,Bq,Ds(cBq,Cr,Ds ×idB̂(Ap,Bq)
)→cAp,Cr,Ds(idB̂(Cr,Ds)

×cAp,Bq,Cr).

� The identity 1-morphism on Ap is given by (p,mp,∆p,mp,∆p). Let f :Ap→Bq
and g :Cr→Ap be 1-morphism. We now have the following.
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Since splittings are unique up to unique isomorphism, we have isomorphisms

lg :p⊗pg→g and rf :f⊗pp→f. These form natural isomorphism

lCr,Ap :cCr,Ap,Ap(p,−)→ idB̂(Cr,Ap)
and

rAp,bq :cAp,Ap,Bq(−,p)→ idB̂(Ap,Bq)
.

� Since both the associator and left and right unitors are given by unique

isomorphisms between colimits, it follows immediately that the triangle and

pentagon axiom both have to hold.

We �rst will show that B̂ is a completion of B in the sense that B embeds into B̂
and is equivalent to it if B was already idempotent complete.

Proposition 3.7. For every locally idempotent complete bicategory B, there
exists a fully faithful pseudofunctor ιB :B→ B̂. If B is furthermore idempotent

complete, this functor is an equivalence.

Proof. We de�ne ιB to map the objectA in B onto (A,idA,ididA ,ididA) in B̂. ιB maps

1-morphisms f :A→B in B onto the the morphism (f,idf,idf,idf,idf) :AidA →BidB

and 2-morphisms φ :f→g in B onto φ :f→g in B̂.

We now note that, for objects A,B in B, every morphism in B̂ between AidA and

BidB is of the form (f,idf,idf,idf,idf) where f is an arbitrary morphism f :A→B in

B. Since a 2-morphism between 1-morphisms of the form (f,idf,idf,idf,idf) and

(g,idg,idg,idg,idg) is also just an arbitrary 2-morphism φ :f→g, we see that ιB is

fully faithful.

Now assume that B is idempotent complete and let (A,p,m,∆) be an object in

B̂. We want to show that ιB is essentially surjective, i.e., there exists some B in B
such that Ap≃ ιBB. We know that the 2-idempotent (A,p,m,∆) splits in B, which
means there exists an object B in B, 1-morphisms f :A→B and g :B→A in B,
2-morphisms φ :f◦g→ idB, ψ : idB→f◦g and an isomorphism γ :g◦f→p such that

φ·ψ= ididB , m=γ·(idg◦φ◦idf)·(γ−1◦γ−1) and ∆=(γ◦γ)·(idg◦ψ◦idf)·γ−1.

We can now de�ne the morphisms

(f,(φ◦idf)·(idf◦γ−1),(idf◦γ)·(ψ◦idf),idf,idf) :Ap→BidB and

(g,idg,idg,(idg◦φ)·(γ−1◦idg),(γ◦idg)·(idg◦ψ)) :BidB →Ap

and, with these, we now have g⊗idB f
∼=g◦f ∼=p= idAp and f⊗pg ∼= idB. Thus it

follows that Ap≃BidB and ιB :B→ B̂ is an equivalence of bicategories.

For B̂ to be the completion of B under splitting 2-idempotents, we want B̂ itself

to be idempotent complete, which we will show in the following.
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3 Karoubi Completion

Proposition 3.8. For every locally idempotent complete bicategory B, the bi-
category B̂ is idempotent complete.

Proof. We �rst need to show that B̂ is locally idempotent complete. Let Ap
and Bq be objects in B̂, (h,◁h,ρh,▷h,λh) :Ap→Bq a 1-morphism and p :h→h an

idempotent 2-morphism. Since B is locally idempotent complete, we know that

the idempotent p splits into 2-morphism f :h→s and g :s→h such that gf=p

and fg= ids where s :A→B is a 1-morphism in B. Note that, a prior, s is not a

morphism in B̂ but we can turn s into a morphism s :Ap→Bq with the following

left and right (co)action.

With this de�nition of s, f and g also become 2-morphisms in B̂ and therefore

split the idempotent p. Thus B̂ is locally idempotent complete.

Now, let (A,p,m,∆) be an object in B̂ and (e,◁,ρ,▷,λ) a 2-idempotent on Ap,

which means we have morphisms m⊗
e :e⊗pe→e and ∆⊗

e :e→e⊗pe such that

(ide⊗pm
⊗
e )·(∆⊗

e ⊗p ide)=(m⊗
e ⊗p ide)·(ide⊗p∆

⊗
e )=∆

⊗
e ·m⊗

e and

m⊗
e ·∆⊗

e = ide.

We want to show that this 2-idempotent splits. From the de�nition of e⊗pe we

have 2-morphisms φ :e◦e→e⊗pe and ψ :e⊗pe→e◦e such that φ·ψ= ide⊗pe and

ψ·φ=κe◦e.
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3 Karoubi Completion

Combining these we get morphisms me=m
⊗
e ·φ :e◦e→e and ∆e=ψ·∆⊗

e :e→e◦e.
Graphically, we can represent these in the following way.

This de�nes a 2-idempotent in B as we will show graphically.

Therefore (A,e,me,∆e) is an object in B̂ and furthermore we can now de�ne mor-

phisms (e,◁,ρ,me,∆e) :Ap→Ae and (e,me∆e,▷,λ) :Ae→Ap. Composing them in

B̂, we get e⊗ee ∼=e :Ap→Ap and e⊗pe :Ae→Ae. As we have morphisms m⊗
e :

e⊗pe→e= idAe and ∆⊗
e : idAe =e→e⊗pe, we have shown that (e,◁,ρ,▷,λ) splits

in B̂ and thus B̂ is idempotent complete.

Since a 2-idempotent p :A→A in B de�nes a 2-idempotent p :AidA →AidA in B̂, we
also get the following statement.

Remark 3.9. For an object Ap in B̂, Ap is a splitting of the 2-idempotent p on

AidA.

Lastly, we want to show that the Karoubi completion B̂ is universal among all

possible idempotent completions of B, which is why we are able to call it the

idempotent completion of B. What we mean by universal is that for each pseud-

ofunctor F from B into an arbitrary idempotent complete bicategory C, there is a
pseudofunctor F′ : B̂→C such that F′ιB ∼=F.
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3 Karoubi Completion

Theorem 3.10. For each locally idempotent complete bicategory B and idem-

potent complete bicategory C, we have an equivalence of bicategories

Bicat(B̂,C)≃Bicat(B,C)

induced by precomposing with ιB.

Proof. First, we want to show that for every pseudofunctor F :B→C, there ex-

ists a pseudofunctor F′ : B̂→C such that F′ιB≃F, i.e., precomposition with ιB is

essentially surjective. For a given pseudofunctor F :B→C we can de�ne the pseud-

ofunctor F̂ : B̂→ Ĉ which maps a 2-idempotent (A,p,m,∆) onto the 2-idempotent

(F(A),F(p),F(m),F(∆)) and acts analogously on 1-morphisms and 2-morphisms.

The following diagram now commutes up to equivalence

B C

B̂ Ĉ

F

ιB ιC

F̂

Since C is an idempotent complete bicategory, ιC is an equivalence and we can

choose an inverse ιC
−1. We now de�ne F′= ιC

−1F̂ and have F′ιB= ιC
−1F̂ιB≃ ιC−1ιCF≃

F.

Secondly, we need to show that precomposition with ιB is essentially surjective

on Hom-categories. Let F,G : B̂→C be pseudofunctors. We want to show that

for each strong transformation φ :FιB→GιB, we can �nd a strong transformation

φ′ :F→G such that φ′ιB ∼=φ. For a given φ :FιB→GιB, we de�ne such a φ′ by

de�ning an idempotent and then setting φ′
Ap

to be its splitting. This idempotent

γAp :G(p)φAF(p)→G(p)φAF(p) is given via

F(AidA) F(AidA)

F(Ap)

G(AidA) G(AidA)

G(Ap)

F(p) F(p)

F(p)

φA φA

G(p)

G(p) G(p)

F(∆p)

φ−1
p

G(mp)
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3 Karoubi Completion

and we now have a splitting φ′
Ap

:F(Ap)→G(Ap) along with morphisms αAp :

G(p)φAF(p)→φ′
Ap

and βAp :φ
′
Ap

→G(p)φAF(p) which satisfy αApβAp = idφ′
Ap

and

βApαAp =γAp . We de�ne φ′
f on a morphism f :Ap→Bq via

F(Ap) F(Bq)

F(AidA) F(BidB)

G(AidA) G(BidB)

G(Ap) G(Bq)

F(f)

F(f)

G(f)

G(f)

F(p)

φA

G(p)

F(q)

φB

G(q)

φ′
Ap

φ′
BqβAp

αBq
φf

where the top morphism is given by the image of

under F and the bottom morphism is given by the image of

under G. This turns φ′ :G→F into a strong transformation. We now need to show

that φ′ιB ∼=φ, i.e. φ
′
AidA

∼=φA. If we look at the idempotent γAidA
we see that it

splits via φA and thus φ′
AidA

∼=φA.

Last, we need to show that precomposition with ιB is fully faithful on Hom-

categories. Let F,G : B̂→C be pseudofunctors and φ,ψ :F→G strong transforma-

tions. We want to show that we have an isomorphism

Bicat(B̂,C)(F,G)(φ,ψ) ∼=Bicat(B,C)(FιB,GιB)(φιB,ψιB).

Let Γ :φιB→ψιB be a modi�cation. We can construct a modi�cation Γ ′ :φ→ψ

with components Γ ′
Ap

:φAp →ψAp via the following.
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3 Karoubi Completion

F(Ap)

F(AidA)

G(AidA)

G(Ap)

G(Ap) F(Ap)φAp ψAp

φAp

G(p)

F(p)

ψAp

F(p)

G(p)

F(p)

G(p)

φAidA
ψAidA

ΓA

φp

ψp

G(∆p)

F(mp)

l−1

r

This de�nes a modi�cation Γ ′ :F→G and we can see that this construction de�nes

an inverse on the level of modi�cations. Thus precomposition with ιB is fully

faithful on Hom-categories and we have an equivalence

Bicat(B̂,C)≃Bicat(B,C).

Remark 3.11. Without going into technical details, theorem 3.10 is a conse-

quence of the fact that idempotent completion should form a left adjoint trifunctor

(̂−) :Bicatlic→Bicatic from the tricategory of locally idempotent complete bicat-

egories, pseudofunctors, strong transformations and modi�cations into the full

subtricategory of idempotent complete bicategories, analogously to theorem 1.12.
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4 Cauchy Completion

4 Cauchy Completion

We are now going to de�ne the Cauchy completion of a bicategory, which is its

completion under absolute weighted colimits. We will see, that it is universal

among all bicategories that have this property. Before we get to this, we will show

that a 2-idempotent splitting in a locally idempotent bicategory is a weighted

colimit. Since 2-idempotent splittings are preserved by every pseudofunctor, they

in fact de�ne absolute weighted colimits.

4.1 2-Idempotent Splittings as Absolute Weighted Colimits

We brie
y recall de�nition 3.4 of the free walking 2-idempotent splitting ♠2. ♠2

has two objects X and Y and a 2-idempotent on X which splits via Y given by

morphisms f :X→Y, g :Y→X, φ :fg→ idY and ψ : idY→fg. The free walking 2-

idempotent ♣2 is the full subbicategory of ♠2 on X.

Proposition 4.1. Let B be a locally idempotent complete bicategory and let

(A,p,m,∆) be a 2-idempotent which corresponds to the pseudofunctor F :♣2→
B. The weighted colimit of F along the weight ♠2(ι−,Y) :♣2→Catic determines

a splitting of Ap and every splitting determines a colimit of F weighted by

♠2(ι−,Y).

Proof. Let B in B be a weighted colimit with colimiting strong transformation

λ :♠2(ι−,Y)→B(F−,B). We want to show that this de�nes a splitting of the

idempotent determined by F. We have a functor λX :♠2(X,Y)→B(A,B) and a

1-morphism f̃=λX(f) :A→B.

We can de�ne a strong transformation κ :♠2(ι−,Y)→B(F−,A) via

κX :♠2(X,Y)→B(A,A)
f 7→p

(φidf :fgf→f) 7→(m :p2→p)

(ψidf :f→fgf) 7→(∆ :p→p2)

This fully de�nes κ up to isomorphism since the action of ♣2(X,X) on ♠2(X,Y)

generates every other object and morphism in ♠2(X,Y). By the universal property

of the weighted colimit, we now have a morphism g̃ :B→A such that g̃∗λ ∼=κ

given by a modi�cation Γ : g̃∗λ→κ. This modi�cation also gives us the desired

isomorphism γ=ΓX,f : g̃f̃→p.

We now also need to �nd morphisms φ̃ : f̃g̃→ idB and ψ̃ : idB→ f̃g̃ such that φ̃ψ̃=

52



4 Cauchy Completion

ididB . For this we use the equivalence

λ∗ :B(B,B)→Bicat(♣2,Catic)(♠2(ι−,Y),B(F−,B))

by which we know it is su�cient to �nd modi�cations Φ : (f̃g̃)∗λ→λ and Ψ :λ→
(f̃g̃)∗λ such that ΦΨ= idλ. Similar to above, it is su�cient to give ΦX,f and ΨX,f
to de�ne Φ and Ψ up to isomorphism. These we can de�ne by

f̃g̃λX(f)= f̃g̃f̃ f̃p λX(fgf) λX(f)= f̃
∼=

f̃γ

∼=

λgf

λX(φf)

λX(ψf)

where λgf is given by

♠2(X,Y) ♠2(X,Y)

B(A,B) B(A,B)

λX

(gf)∗

λX

p∗

λgf

One can clearly see that these satisfy ΦΨ= idλ and thus they induce morphisms

φ̃ : f̃g̃→ idB and ψ̃ : idB→ f̃g̃ such that φ̃ψ̃= ididB. We now need to check the com-

patibility between φ̃ and ψ̃ and m and ∆. This we can represent via the diagram

g̃f̃g̃f̃ g̃f̃

p2 p

γγ

g̃φ̃f̃

γ

g̃ψ̃f̃

m

∆

We know that the diagram

g̃λX(f)g̃f̃ g̃λX(f)p g̃λX(fgf) g̃λX(f)

κX(f)g̃f̃ κX(f)p κX(fgf) κX(f)

g̃λX(f)γ

ΓX,fg̃f̃ ΓX,fp

g̃λgf

ΓX,fgf

g̃λX(φf)

g̃λX(ψf)

ΓX,f

κX(f)γ κgf
κX(φf)

κX(ψf)

commutes and this is the same diagram as the following
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4 Cauchy Completion

g̃f̃g̃f̃ g̃f̃p g̃λX(fgf) g̃f̃

pg̃f̃ p2 p2 p

g̃f̃γ

γg̃f̃ γp

g̃λgf

ΓX,fgf

g̃λX(φf)

g̃λX(ψf)

γ

pγ = m

∆

which gives us the desired result.

Now let (A,B,f,g,φ,ψ,γ) be a splitting of Ap. First, we can de�ne a strong

transformation

λ :♠2(ι−,Y)→B(F−,B)

by λX(f)=f :A→B. We now need to show that it is colimiting, i.e.,

λ∗ :B(B,C)→Bicat(♣2,Catic)(♠2(ι−,Y),B(F−,C))

de�nes an equivalence of categories for each object C in B. Let κ :♠2(ι−,Y)→
B(F−,C) be another strong transformation which is determined by κX(f) :A→C.

We can now form the morphism κX(f)⊗pg :B→C with which we can form the

strong transformation (κX(f)⊗pg)∗λ. We now have

κX(f)⊗pgλX(f)=κX(f)⊗pgf ∼=κX(f)⊗pp ∼=κX(f)

which implies (κX(f)⊗pg)∗λ ∼=κ and thus λ∗ is essentially surjective. Now let h,h′ :

B→C be 1-morphisms in B. We now want to show that λ∗ induces an ismorphism

B(B,C)(h,h′) ∼=Bicat(♣2,Catic)(♠2(ι−,Y),B(F−,C))(h∗λ,h
′
∗λ).

Let Γ :h∗λ→h′
∗λ be a strong transformation. We can de�ne a morphism θ :h→h′

via

h h′

hf⊗pg h′f⊗pg

θ

∼= ∼=

ΓX,f⊗pg

and we have θ∗λ=Γ since

hf h′f

hf⊗pgf h′f⊗pgf

ΓX,f=θf

∼= ∼=

ΓX,f⊗pgf

and thus λ∗ is full. Lastly we want to show that it is faithful. Let θ,θ′ :h→h′ be

2-morphisms such that θ∗λ=θ
′
∗λ. We now have
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h h′

hf⊗pg h′f⊗pg

θ

∼=
θ′

∼=

θf⊗pg

θ′f⊗pg

and thus λ∗ is faithful. All put together, we have shown that λ∗ de�nes an equiva-

lence of categories and therefore de�nes a weighted colmit of F along ♠2(ι−,Y).

Corollary 4.2. Any two splittings of the same 2-idempotent in a locally idem-

potent complete bicategory are equivalent.

Corollary 4.3. ♠2(ι−,Y) :♣2→Catic is an absolute weight.

Corollary 4.4. Let B be a bicategory. The bicategories Catic, Catopic and

Pshic(B) are 2-idempotent complete.

Proof. We have already seen that Catic, Catopic and Pshic(B) are all locally idem-

potent complete. Since Catic and Pshic(B) are cocomplete and splittings of a

2-idempotents are given by a weighted colimit, they are also 2-idempotent com-

plete.

One can show, that the data of a 2-idempotent in Catopic is the same data as that

of a 2-idempotent in Catic and furthermore a splitting of this idempotent in Catopic
de�nes a splitting of it in Catic and vice versa. This implies that Catopic is also

2-idempotent complete.

4.2 Cauchy Completion of a Bicategory

Finally, we can de�ne the bicategorical analogue of Cauchy completion.

Definition 4.5. (Cauchy completion) We call an object A in a locally idempotent

complete bicategory B tiny if the pseudofunctor B(A,−):B→Catic is cocontinu-

ous, i.e., preserves all weighted colimits.

Let B be a locally idempotent complete bicategory. The Cauchy completion

of B is de�ned to be the full subbicategory of tiny objects in Pshic(B), i.e., an
object in this bicategory is a pseudofunctor S :B→Catopic such that Pshic(B)(S,−):

Pshic(B)→Catic is cocontinuous. We will denote this bicategory as Pshtn
ic (B).

We �rst will show that Pshtn
ic (B) is a completion of B in the sense that B embeds

into Pshtn
ic (B) and is equivalent to it if B was already complete under absolute

weighted colimits. To do this we will prove the following propositions.

Proposition 4.6. Representable presheaves are tiny.
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Proof. Let A be an object in B, we will now show that B(−,A) is tiny. Let F :

J→Pshic(B) be a pseudofunctor andW :J→Catopic a weight with colimit colimWF,

i.e., we have a strong transformation equivalence

λ∗ :Pshic(B)(colimWF,−)→Bicat(J,Catopic )(W,Pshic(B)(F,−))

given by precomposing with a colimiting strong transformation

λ :W→Pshic(B)(F−,colimWF).

We will now see that Pshic(B)(B(−,A),−) preserves this colimit. Applying this

functor to λ yields a strong transformation

Pshic(B)(B(−,A),λ) :W→Catic(Pshic(B)(B(−,A),F−),Pshic(B)(B(−,A),colimWF)).

We will now check that

Pshic(B)(B(−,A),λ)∗ :Catic(Pshic(B)(B(−,A),colimWF),−)→Bicat(J,Catopic )(W,Catic(Pshic(B)(B(−,A),F−),−))

de�nes an equivalence of pseudofunctors. Via the Yoneda lemma, the strong trans-

formation Pshic(B)(B(−,A),λ) corresponds to the strong transformation λA :W→
Catic(F(−)(A),colimWF(A)). Since weighted colimits in Pshic(B) are computed

point-wise, we know that λA has to de�ne a weighted colimit which implies that

Pshic(B)(B(−,A),λ) already had to have been colimiting. Thus the pseudofunctor

Pshic(B)(B(−,A),−) preserves colimits and B(A,−) is tiny.

Proposition 4.7. Let B be a locally idempotent complete bicategory. Every

tiny presheaf S :B→Catopic is a retract of a representable presheaf.

Proof. We can express S as the weighted colimit of HB :B→Pshic(B) along the

weight S :B→Catopic with a strong transformation λ :S→Pshic(B)(HB−,S) given

by the Yoneda lemma. Since S is tiny we can now apply the functor Pshic(B)(S,−)

to this colimit and we have colimiting strong transformation

Pshic(B)(S,λ) :S→Catic(Pshic(B)(S,HB−),Pshic(B)(S,S))

for the weighted colimit of Pshic(B)(S,HB−):B→Catic along S :B→Catopic . Since

this is now a weighted colimit in Catic we can explicitely de�ne another colimit

using theorem 2.45. We get a colimiting strong transformation

κ :S→Cat(Pshic(B)(S,HB−),colimSPshic(B)(S,HB−))

κA(a) :Pshic(B)(S,B(−,A))→colimSPshic(B)(S,HB−)

κA(a)(α)=(a,α)
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for the colimit in Cat. Using theorem 2.49, we can now form the colimit in Catic
by taking the idempotent completion. Let C be the idempotent completion of

colimSPshic(B)(S,HB−) with embedding ι :colimSPshic(B)(S,HB−)→C. We now

have a colimit strong transformation

κ̃ :S→Catic(Pshic(B)(S,HB−),C)

given by κ̃= ι∗κ. Since C and Pshic(B)(S,S) are now both weighted colimits of

Pshic(B)(S,HB−) along the weight S, we have an equivalence of categories Φ :C→
Pshic(B)(S,S) such that Φ∗κ̃ ∼=Pshic(B)(S,λ). Φ is de�ned by the following. Let

(a,α) with a in S(A) and α :S→B(−,A) be an object in colimSPshic(B)(S,HB−).

We now have

Φι(a,α)=λA(a)α :S→S.

This de�nes Φ up to isomoprhism since by corollary 1.13 for any category D
and idempotent complete category E , precomposition with ιD :D→D̂ de�nes an

equivalence

ι∗D :Cat(D̂,E)→Cat(D,E).

Φ now has the desired property since

(Φ∗κ̃)A(a)(α)=ΦικA(a)(α)=Φι(a,α)=λA(a)α=Pshic(B)(S,λ)A(a)(α).

We know thatΦ has to be an equivalence, so there exists an object C in C such that

ΦC ∼= idS via an isomorphism γ :ΦC→ idS. Since C lives in the idempotent comple-

tion of colimSPshic(B)(S,HB−), we know due to remark 1.11 that there exists an

object (a,α) and an idempotent p : (a,α)→(a,α) in colimSPshic(B)(S,HB−) and

morphisms φ̃ : ι(a,α)→C and ψ̃ :C→ ι(a,α) in C such that φ̃ψ̃= idC and ψ̃φ̃= ι(p).

We now have

φ=γΦ(φ̃) :λA(a)α→ idS and

ψ=Φ(ψ̃)γ−1 : idS→λA(a)α

such that φψ= ididS . Therefore S is a 2-idempotent splitting of the 2-idempotent

αλA(a) :B(−,A)→B(−,A).

Proposition 4.8. For every locally idempotent bicategory B, the Yoneda em-

bedding HB :B→Pshic(B) takes values in Pshtnic (B) and thus de�nes a fully

faithful pseudofunctor HB :B→Pshtnic (B). If B is furthermore complete under

absolute weighted colimits, this pseudofunctor is an equivalence.

Proof. Let A be an object in B. It follows from proposition 4.6 that HB(A)=

B(−,A) is tiny. Thus HB :B→Pshtn
ic (B) de�nes a fully faithful pseudofunctor.

57



4 Cauchy Completion

Now assume B is complete under absolute weighted colimits. Let S be an object

in Pshtn
ic (B). By proposition 4.7, S is a 2-idempotent splitting of a 2-idempotent

p :B(−,A)→B(−,A). Since HB :B→Pshtn
ic (B) is fully faithful, there exists a 2-

idempotent p̃ :A→A in B such thatHB(p̃) ∼=p. Since we assumed B to be complete

under absolute weighted colimits, there exists a splitting of p̃ given by an object

B and we thus haveHB(B)≃S by corollary 4.2 and thereforeHB is an equivalence

of bicategories.

Next we will check that the Cauchy completion of a category is complete under

absolute weighted colimits. For this we will prove the following lemma.

Lemma 4.9. A retract of a tiny object is tiny.

Proof. Let B be a retract of a tiny object A in a locally idempotent bicategory

B, i.e., we have 1-morphisms f :A→B and g :B→A and 2-morphisms φ :fg→ idB
and ψ : idB→fg such that φψ= ididB. Let W :J→Catopic be a weight and F :J→B
a pseudofunctor with colimiting strong transformation λ :W→B(F−,C). We need

to show that

B(B,λ) :W→Catic(B(B,F−),B(B,C))

de�nes a colimiting strong transformation. Let C be an idempotent complete

category and κ :W→Catic(B(B,F−),C) a strong transformation. We can now form

the diagram

B(A,Fj) B(B,Fj) C

B(A,C) B(B,C)

λj(a)∗

g∗
⊗

κj(a)

λj(a)∗

f∗

g∗
⊗

f∗

where j is an object in J, a an object in Wi and g∗
⊗ is given by g∗

⊗(h)=h⊗pg.

This diagram now commutes up to isomorphism.

We can now de�ne a strong transformation

κ̃ :W→Catic(B(A,F−),C)
κ̃j(a)=κj(a)g

∗
⊗

for objects j in J and a inWi. Since A is a tiny object, we know that B(A,λ) :W→
Catic(B(A,F−),B(A,C)) de�nes a colimiting strong transformation and therefore

we have a functor φ̃ :B(A,C)→C such that φ̃∗B(A,λ) ∼= κ̃. We now de�ne φ=φ̃f∗ :

B(B,C)→C and we have

φλj(a)∗ ∼=φ̃f
∗λj(a)∗ ∼=φ̃λj(a)∗f

∗ ∼= κ̃j(a)f
∗

∼=κj(a)g
∗
⊗f

∗ ∼=κj(a)(f⊗pg)
∗ ∼=κj(a)id

∗
S
∼=κj(a)
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and thus φ∗B(B,λ) ∼=κ. This now shows that B(B,λ) is colimiting and thus B is

tiny

Proposition 4.10. Let B be a locally idempotent complete bicategory. Its

Cauchy completion Pshtnic (B) is complete under absolute colimits.

Proof. Let W :J→Catopic be an absolute weight, and F :J→Pshtn
ic (B) a pseudo-

functor. This colimit will exist in Pshic(B) since it is cocomplete. Let λ :W→
Pshic(B)(F−,S) be a colimiting strong transformation. We will now show S is in-

deed a tiny presheaf, i.e., the colimit exists in Pshtn
ic (B). Applying Pshic(B)(S,−)

yields a colimiting strong transformation

Pshic(B)(S,λ) :W→Catic(Pshic(B)(S,F−),Pshic(B)(S,S)).

Analogously to the proof of proposition 4.7, S is a retract of a tiny presheaf and

therefore, by lemma 4.9 S is tiny and the weighted colimit of F along W exists in

Pshtn
ic (B).

Finally, we can now rigorously prove that the Karoubi completion of a locally

idempotent bicategory is equivalent to its Cauchy completion.

Theorem 4.11. Let B be a locally idempotent complete category. The peudo-

functor given by the composition

B̂ Pshic(B̂) Pshic(B)
H

B̂ ι∗B

de�nes an equivalence of bicategories B̂≃Pshtnic (B).

Proof. First, we want to show that the pseudofunctor takes values in tiny objects,

i.e., for every object Ap in B̂, the presheaf B̂(ιB,Ap) :B→Catopic is tiny. Remark

3.9 states that Ap is a splitting of the 2-idempotent p on AidA . By absoluteness of

splittings, we have that B̂(ιB,Ap) is a splitting of an idempotent on B̂(ιB,AidA)=

B̂(ιB,ιBA). Since ιB is fully faithful, we have that B̂(ιB,ιBA)≃B(−,A). This means

that B̂(ιB,Ap) is a retract of a representable presheaf and by lemma 4.9, it therefore

is tiny.

Next, we will show that the pseudofunctor is fully faithful. Since the Yoneda

embedding is fully faithful and by theorem 3.10 with C=Catopic , precomposition

with ιB is fully faithful, their composition must also be fully faithful.

Lastly, we check that the pseudofunctor is essentially surjective. Let S be a tiny

idempotent complete presheaf on B. By proposition 4.7, there exists an object A

in B and a 2-idempotent p on A such that S is a splitting of the 2-idempotent
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4 Cauchy Completion

p∗ on B(−,A). Remark 3.9 states that Ap is a splitting of the 2-idempotent p on

AidA = ιBA. By absoluteness of splittings B̂(ιB,Ap) is a splitting of the idempotent

p∗ on B̂(ιB,ιBA)≃B(−,A). Since splittings of 2-idempotents are unique up to

equivalence, it follows that S≃ B̂(ιB,Ap).

We can now also see that 2-idempotent completeness and completeness under

absolute weighted colimits are the same concept in a locally idempotent bicategory.

Corollary 4.12. A locally idempotent bicategory is idempotent complete if

and only if it is complete under absolute weighted colimits.

Proof. Let B be an idempotent complete bicategory. By proposition 3.7 and

theorem 4.11, we now have B≃ B̂≃Pshtn
ic (B). Since Pshtn

ic (B) is complete under

absolute colimits, B must also be. The opposite direction follows analogously by

proposition 4.8.

Finally we can show that the Cauchy completion is universal among all completions

under absolute weighted colimits in the sense that every pseudofunctor F :B→C
from a locally idempotent complete bicategory into a locally idempotent com-

plete bicategory complete under absolute weighted colimits, i.e., an idempotent

complete bicategory, factors through the Yoneda embedding HB :B→Pshtn
ic (B).

Corollary 4.13. For every locally idempotent bicategory B and idempotent

complete bicategory C, there is an equivalence

Bicat(Pshtnic (B),C)≃Bicat(B,C)

given by precomposing with HB.

Proof. Theorems 4.11 and 3.10 give us equivalences

Bicat(Pshtn
ic (B),C) Bicat(B̂,C) Bicat(B,C)

(ι∗BHB̂
)∗

ι∗B

Composing them we get ι∗B(ι
∗
BHB̂)

∗=(ι∗BHB̂ιB)
∗. For an object A in B, we have

ι∗BHB̂ιBA= B̂(ιB,ιBA)≃B(−,A)=HBA and therefore ι∗B(ι
∗
BHB̂)

∗ ≃H∗
B.
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